Properties

Label 18.0.67326990202...4131.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{9}\cdot 17^{9}\cdot 19^{16}$
Root discriminant $97.83$
Ramified primes $3, 17, 19$
Class number $784854$ (GRH)
Class group $[784854]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31522065121, -11355872994, 17074629129, -5397548424, 4267526217, -1178657248, 643876978, -154238751, 64493752, -13225274, 4439956, -761507, 209683, -28817, 6531, -658, 121, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 + 121*x^16 - 658*x^15 + 6531*x^14 - 28817*x^13 + 209683*x^12 - 761507*x^11 + 4439956*x^10 - 13225274*x^9 + 64493752*x^8 - 154238751*x^7 + 643876978*x^6 - 1178657248*x^5 + 4267526217*x^4 - 5397548424*x^3 + 17074629129*x^2 - 11355872994*x + 31522065121)
 
gp: K = bnfinit(x^18 - 7*x^17 + 121*x^16 - 658*x^15 + 6531*x^14 - 28817*x^13 + 209683*x^12 - 761507*x^11 + 4439956*x^10 - 13225274*x^9 + 64493752*x^8 - 154238751*x^7 + 643876978*x^6 - 1178657248*x^5 + 4267526217*x^4 - 5397548424*x^3 + 17074629129*x^2 - 11355872994*x + 31522065121, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} + 121 x^{16} - 658 x^{15} + 6531 x^{14} - 28817 x^{13} + 209683 x^{12} - 761507 x^{11} + 4439956 x^{10} - 13225274 x^{9} + 64493752 x^{8} - 154238751 x^{7} + 643876978 x^{6} - 1178657248 x^{5} + 4267526217 x^{4} - 5397548424 x^{3} + 17074629129 x^{2} - 11355872994 x + 31522065121 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-673269902026520824357188276050914131=-\,3^{9}\cdot 17^{9}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $97.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 17, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(969=3\cdot 17\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{969}(256,·)$, $\chi_{969}(1,·)$, $\chi_{969}(460,·)$, $\chi_{969}(917,·)$, $\chi_{969}(662,·)$, $\chi_{969}(919,·)$, $\chi_{969}(613,·)$, $\chi_{969}(866,·)$, $\chi_{969}(101,·)$, $\chi_{969}(358,·)$, $\chi_{969}(815,·)$, $\chi_{969}(560,·)$, $\chi_{969}(305,·)$, $\chi_{969}(562,·)$, $\chi_{969}(254,·)$, $\chi_{969}(764,·)$, $\chi_{969}(766,·)$, $\chi_{969}(511,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{469661808795580518838880204416757309958104658061305175082007631} a^{17} + \frac{50973052494159566352769077022799758791907385364247599739092069}{469661808795580518838880204416757309958104658061305175082007631} a^{16} - \frac{194635494032454225451139208488746736743470166154310611111721541}{469661808795580518838880204416757309958104658061305175082007631} a^{15} - \frac{36624120839577090038444838981707236087024020296418889380984797}{469661808795580518838880204416757309958104658061305175082007631} a^{14} + \frac{204935382792749673348353751052120814532688552140290296538083303}{469661808795580518838880204416757309958104658061305175082007631} a^{13} + \frac{218532290051546872150536473622401214731916446499948706338649558}{469661808795580518838880204416757309958104658061305175082007631} a^{12} + \frac{160236147263078038866495221973488614125249280173799030877394610}{469661808795580518838880204416757309958104658061305175082007631} a^{11} + \frac{55902918650615940771277196808917586567086474204235154924148253}{469661808795580518838880204416757309958104658061305175082007631} a^{10} - \frac{136233988877788379833625114603610725963431892397545841436234956}{469661808795580518838880204416757309958104658061305175082007631} a^{9} + \frac{16676135819862676286450239904424846223912989448705411946621423}{469661808795580518838880204416757309958104658061305175082007631} a^{8} + \frac{180258706341204930881746817015199731069779964152573875354330600}{469661808795580518838880204416757309958104658061305175082007631} a^{7} + \frac{133290286424395341829749588656456917900163099280918740853015651}{469661808795580518838880204416757309958104658061305175082007631} a^{6} - \frac{21598228358795931266162145540085990111943636161751383774525905}{469661808795580518838880204416757309958104658061305175082007631} a^{5} - \frac{214648186746361152664341500031972245923375961042822926028998499}{469661808795580518838880204416757309958104658061305175082007631} a^{4} - \frac{204046244430091717851476918999539411686283959076165989159596832}{469661808795580518838880204416757309958104658061305175082007631} a^{3} + \frac{116852127294300389613704702092871036765044264056632967719196321}{469661808795580518838880204416757309958104658061305175082007631} a^{2} - \frac{144105615933554336452129715634346869851096009126228307459665010}{469661808795580518838880204416757309958104658061305175082007631} a - \frac{42122397764379567688238525112004106476682825670323321471690616}{469661808795580518838880204416757309958104658061305175082007631}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{784854}$, which has order $784854$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-51}) \), 3.3.361.1, 6.0.17287210971.4, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ R R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ $18$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
17Data not computed
$19$19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$