Normalized defining polynomial
\( x^{18} - 9 x^{17} + 43 x^{16} - 140 x^{15} + 353 x^{14} - 735 x^{13} + 1291 x^{12} - 1909 x^{11} + 2255 x^{10} - 1903 x^{9} + 935 x^{8} - 61 x^{7} - 215 x^{6} + 87 x^{5} + 35 x^{4} - 38 x^{3} + 13 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-66513197260078857421875=-\,3^{9}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{606429} a^{16} - \frac{8}{606429} a^{15} + \frac{65032}{606429} a^{14} + \frac{151345}{606429} a^{13} + \frac{226472}{606429} a^{12} - \frac{294536}{606429} a^{11} - \frac{47926}{202143} a^{10} + \frac{255022}{606429} a^{9} + \frac{1469}{4701} a^{8} - \frac{277754}{606429} a^{7} + \frac{48896}{202143} a^{6} - \frac{245210}{606429} a^{5} - \frac{242227}{606429} a^{4} + \frac{10468}{606429} a^{3} + \frac{91882}{606429} a^{2} + \frac{67102}{606429} a + \frac{8677}{606429}$, $\frac{1}{43056459} a^{17} + \frac{3}{4784051} a^{16} - \frac{711536}{4784051} a^{15} - \frac{2357752}{14352153} a^{14} - \frac{16307897}{43056459} a^{13} - \frac{207994}{1001313} a^{12} + \frac{20475341}{43056459} a^{11} - \frac{532205}{43056459} a^{10} - \frac{21408322}{43056459} a^{9} - \frac{9412373}{43056459} a^{8} + \frac{734591}{43056459} a^{7} - \frac{10676141}{43056459} a^{6} - \frac{17921012}{43056459} a^{5} + \frac{18215399}{43056459} a^{4} - \frac{1397009}{14352153} a^{3} - \frac{4767823}{14352153} a^{2} - \frac{703878}{4784051} a - \frac{15059173}{43056459}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{725234}{1001313} a^{17} + \frac{6164489}{1001313} a^{16} - \frac{28103350}{1001313} a^{15} + \frac{87485345}{1001313} a^{14} - \frac{70783057}{333771} a^{13} + \frac{47487505}{111257} a^{12} - \frac{724524071}{1001313} a^{11} + \frac{1027351171}{1001313} a^{10} - \frac{1132780187}{1001313} a^{9} + \frac{833635165}{1001313} a^{8} - \frac{291092267}{1001313} a^{7} - \frac{65049254}{1001313} a^{6} + \frac{10483740}{111257} a^{5} - \frac{833821}{111257} a^{4} - \frac{25313632}{1001313} a^{3} + \frac{13333118}{1001313} a^{2} - \frac{4626937}{1001313} a + \frac{1679656}{1001313} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21968.4785291 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.3675.1 x3, \(\Q(\zeta_{7})^+\), 6.0.40516875.1, 6.0.826875.2 x2, 6.0.64827.1, 9.3.49633171875.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.826875.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |