Normalized defining polynomial
\( x^{18} + 15 x^{16} + 78 x^{14} + 198 x^{12} + 378 x^{10} + 378 x^{8} + 270 x^{6} - 162 x^{4} - 243 x^{2} + 243 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-664302412524060379120140288=-\,2^{32}\cdot 3^{15}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{54} a^{12} - \frac{1}{18} a^{8} - \frac{1}{6} a^{4} - \frac{1}{2}$, $\frac{1}{54} a^{13} - \frac{1}{18} a^{8} - \frac{1}{6} a^{5} - \frac{1}{2}$, $\frac{1}{54} a^{14} - \frac{1}{18} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2}$, $\frac{1}{162} a^{15} - \frac{1}{54} a^{11} - \frac{1}{6} a^{7} + \frac{1}{6} a^{3}$, $\frac{1}{85374} a^{16} + \frac{49}{9486} a^{14} - \frac{65}{28458} a^{12} - \frac{83}{3162} a^{10} - \frac{35}{3162} a^{8} + \frac{129}{1054} a^{6} - \frac{79}{3162} a^{4} - \frac{9}{62} a^{2} - \frac{180}{527}$, $\frac{1}{85374} a^{17} - \frac{43}{42687} a^{15} - \frac{65}{28458} a^{13} - \frac{110}{14229} a^{11} - \frac{35}{3162} a^{9} - \frac{70}{1581} a^{7} - \frac{79}{3162} a^{5} - \frac{29}{93} a^{3} - \frac{180}{527} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 810988.914093 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 35 conjugacy class representatives for t18n310 |
| Character table for t18n310 is not computed |
Intermediate fields
| 3.3.564.1, 6.0.61074432.1, 9.3.19375863552.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| 47 | Data not computed | ||||||