Normalized defining polynomial
\( x^{18} - 3024 x^{15} + 1165924 x^{12} + 2022824160 x^{9} + 951986143216 x^{6} + 208357877056896 x^{3} + 19780262567688384 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-66305754614937078316581682973174263499455978739075060969472=-\,2^{12}\cdot 3^{27}\cdot 7^{12}\cdot 13^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1852.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{592} a^{9} + \frac{21}{296} a^{6} - \frac{1}{148} a^{3} - \frac{27}{74}$, $\frac{1}{1184} a^{10} + \frac{21}{592} a^{7} + \frac{73}{296} a^{4} + \frac{47}{148} a$, $\frac{1}{1184} a^{11} + \frac{21}{592} a^{8} - \frac{1}{296} a^{5} - \frac{27}{148} a^{2}$, $\frac{1}{622784} a^{12} + \frac{15}{19462} a^{9} + \frac{317}{38924} a^{6} + \frac{8165}{38924} a^{3} + \frac{16657}{38924}$, $\frac{1}{19306304} a^{13} - \frac{1721}{4826576} a^{10} + \frac{897}{2413288} a^{7} + \frac{46291}{301661} a^{4} + \frac{427463}{1206644} a$, $\frac{1}{57918912} a^{14} - \frac{3865}{9653152} a^{11} + \frac{433903}{14479728} a^{8} - \frac{74947}{2413288} a^{5} - \frac{882847}{1809966} a^{2}$, $\frac{1}{144874599782598908742898560} a^{15} - \frac{1213426729590206389}{1857366663879473189011520} a^{12} + \frac{509613531617969835961}{905466248641243179643116} a^{9} + \frac{40048147158462403768037}{603644165760828786428744} a^{6} - \frac{11172556763040148608217}{532627205083084223319480} a^{3} - \frac{16543009153465710367087}{48680981109744256970060}$, $\frac{1}{315971502125848219968261759360} a^{16} + \frac{16271090863967398737}{1350305564640377008411375040} a^{13} - \frac{904640825710699819662415}{15798575106292410998413087968} a^{10} + \frac{49610779443390740815802139}{877698617016245055467393776} a^{7} + \frac{784632356130453561390001}{145207491785775836382473235} a^{4} + \frac{65950829858407739946054804}{274280817817576579833560555} a$, $\frac{1}{14242099486820482666849430541392640} a^{17} - \frac{125598077160055375169723}{60863673020600353277134318552960} a^{14} + \frac{36077727838251107539950914303}{178026243585256033335617881767408} a^{11} + \frac{165946764503689923730644822989}{19780693731695114815068653529712} a^{8} - \frac{1006373664021961566481047163897}{52360659878016480392828788755120} a^{5} - \frac{18768739546514270282621298447639}{49451734329237787037671633824280} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}\times C_{117}\times C_{15561}$, which has order $11945199357$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1951}{40021838888028960} a^{15} + \frac{4314443}{26681225925352640} a^{12} - \frac{11140981}{108167132129808} a^{9} - \frac{48997265807}{667030648133816} a^{6} - \frac{3043881143243}{147139113558930} a^{3} - \frac{81742243740317}{53792794204340} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 87969966278262.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), Deg 3 x3, Deg 3, 6.0.55520863552535472.1, Deg 6 x2, 6.0.2529669345612397443.1, Deg 9 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $13$ | 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $37$ | 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |