Normalized defining polynomial
\( x^{18} - 2 x^{17} + 16 x^{16} - 34 x^{15} + 114 x^{14} - 238 x^{13} + 595 x^{12} - 1236 x^{11} + 2184 x^{10} - 4548 x^{9} + 5588 x^{8} - 6544 x^{7} + 18315 x^{6} - 19882 x^{5} - 5428 x^{4} + 18166 x^{3} - 5470 x^{2} - 12606 x + 14373 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-660865130598477469667405824=-\,2^{12}\cdot 379^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{18} a^{7} + \frac{1}{6} a^{6} - \frac{1}{18} a^{5} - \frac{1}{18} a^{4} - \frac{5}{18} a^{3} - \frac{7}{18} a^{2} - \frac{1}{6} a$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} + \frac{1}{9} a^{8} + \frac{1}{18} a^{7} + \frac{5}{18} a^{6} + \frac{1}{3} a^{5} + \frac{5}{18} a^{4} - \frac{5}{18} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{54} a^{14} + \frac{1}{54} a^{13} - \frac{1}{54} a^{12} + \frac{1}{54} a^{10} + \frac{2}{27} a^{9} - \frac{1}{9} a^{8} + \frac{1}{54} a^{7} - \frac{2}{27} a^{6} - \frac{2}{9} a^{5} + \frac{25}{54} a^{4} + \frac{2}{27} a^{3} - \frac{25}{54} a^{2} + \frac{2}{9} a + \frac{1}{6}$, $\frac{1}{756} a^{15} + \frac{1}{126} a^{14} - \frac{5}{189} a^{13} + \frac{1}{756} a^{12} - \frac{19}{378} a^{11} - \frac{1}{42} a^{10} + \frac{1}{378} a^{9} + \frac{11}{378} a^{8} - \frac{1}{378} a^{7} - \frac{11}{189} a^{6} - \frac{25}{378} a^{5} + \frac{47}{126} a^{4} + \frac{7}{108} a^{3} + \frac{61}{189} a^{2} + \frac{13}{126} a - \frac{13}{84}$, $\frac{1}{11174436} a^{16} + \frac{7045}{11174436} a^{15} - \frac{12331}{1862406} a^{14} - \frac{268235}{11174436} a^{13} - \frac{89945}{3724812} a^{12} - \frac{245281}{5587218} a^{11} + \frac{19051}{399087} a^{10} + \frac{232250}{2793609} a^{9} - \frac{192485}{5587218} a^{8} - \frac{14005}{5587218} a^{7} + \frac{453385}{1862406} a^{6} + \frac{716939}{5587218} a^{5} + \frac{1279885}{3724812} a^{4} + \frac{150919}{11174436} a^{3} - \frac{87499}{2793609} a^{2} - \frac{1502597}{3724812} a + \frac{557281}{1241604}$, $\frac{1}{362304655614062078649732} a^{17} + \frac{256991739457975}{13418690948668965875916} a^{16} + \frac{750034590153650437}{1927152423479053609839} a^{15} - \frac{292897423582852993189}{32936786874005643513612} a^{14} + \frac{5097115480702816480859}{362304655614062078649732} a^{13} - \frac{3215341902433650335191}{181152327807031039324866} a^{12} - \frac{209421975214734293867}{2744732239500470292801} a^{11} + \frac{585682499318167507765}{12939451986216502808919} a^{10} - \frac{291832914417682774511}{10064018211501724406937} a^{9} + \frac{852835366318379655355}{181152327807031039324866} a^{8} - \frac{2424594130508219845313}{181152327807031039324866} a^{7} - \frac{645932115679326952664}{90576163903515519662433} a^{6} + \frac{9004053018126652034363}{27869588893389390665364} a^{5} - \frac{20680470753100665494783}{51757807944866011235676} a^{4} + \frac{18998376705756116016958}{90576163903515519662433} a^{3} + \frac{94063442240529705476605}{362304655614062078649732} a^{2} + \frac{5649796050688522741985}{120768218538020692883244} a + \frac{2771378977120758627625}{20128036423003448813874}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3306484.46564 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-379}) \), 3.1.379.1 x3, 6.0.54439939.1, 9.1.1320495160384.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 379 | Data not computed | ||||||