Normalized defining polynomial
\( x^{18} - 4 x^{17} - 256 x^{16} + 1138 x^{15} + 24231 x^{14} - 118856 x^{13} - 825357 x^{12} + 4506790 x^{11} + 14933513 x^{10} - 100422380 x^{9} + 48529363 x^{8} + 706102334 x^{7} + 3550027525 x^{6} - 19415573440 x^{5} + 48699532177 x^{4} + 4438727658 x^{3} + 333518260810 x^{2} - 1171630181320 x + 3405745481641 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-65814407127188227791161915140602399158516689403904=-\,2^{27}\cdot 3^{9}\cdot 7^{14}\cdot 67^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $585.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{3}{16} a^{2} - \frac{3}{8} a - \frac{1}{16}$, $\frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{1}{4} a^{2} + \frac{7}{16} a - \frac{3}{8}$, $\frac{1}{64} a^{10} - \frac{1}{32} a^{7} + \frac{5}{64} a^{6} - \frac{1}{8} a^{5} - \frac{29}{64} a^{4} + \frac{3}{32} a^{3} - \frac{11}{32} a^{2} - \frac{1}{16} a + \frac{29}{64}$, $\frac{1}{64} a^{11} - \frac{1}{32} a^{8} + \frac{5}{64} a^{7} - \frac{1}{8} a^{6} - \frac{29}{64} a^{5} + \frac{3}{32} a^{4} - \frac{11}{32} a^{3} - \frac{1}{16} a^{2} + \frac{29}{64} a$, $\frac{1}{512} a^{12} + \frac{1}{256} a^{11} + \frac{3}{512} a^{10} + \frac{7}{256} a^{9} + \frac{1}{512} a^{8} + \frac{3}{128} a^{7} + \frac{17}{256} a^{6} + \frac{37}{128} a^{5} + \frac{191}{512} a^{4} - \frac{71}{256} a^{3} - \frac{237}{512} a^{2} - \frac{81}{256} a + \frac{183}{512}$, $\frac{1}{1024} a^{13} - \frac{1}{1024} a^{12} + \frac{5}{1024} a^{11} - \frac{3}{1024} a^{10} + \frac{23}{1024} a^{9} - \frac{7}{1024} a^{8} + \frac{59}{512} a^{7} - \frac{29}{512} a^{6} + \frac{219}{1024} a^{5} - \frac{307}{1024} a^{4} + \frac{29}{1024} a^{3} - \frac{75}{1024} a^{2} - \frac{155}{1024} a + \frac{371}{1024}$, $\frac{1}{499712} a^{14} + \frac{3}{7808} a^{13} - \frac{233}{249856} a^{12} + \frac{1283}{249856} a^{11} - \frac{3}{4096} a^{10} + \frac{87}{124928} a^{9} - \frac{3975}{499712} a^{8} - \frac{12951}{124928} a^{7} + \frac{57077}{499712} a^{6} - \frac{737}{3904} a^{5} + \frac{1151}{15616} a^{4} - \frac{15501}{249856} a^{3} - \frac{23881}{62464} a^{2} + \frac{27613}{124928} a - \frac{60103}{499712}$, $\frac{1}{17489920} a^{15} + \frac{3}{4372480} a^{14} - \frac{271}{1249280} a^{13} + \frac{4183}{8744960} a^{12} - \frac{787}{8744960} a^{11} - \frac{981}{624640} a^{10} + \frac{120777}{17489920} a^{9} + \frac{489}{1093120} a^{8} + \frac{1284901}{17489920} a^{7} + \frac{44547}{874496} a^{6} - \frac{3051}{78080} a^{5} - \frac{3728589}{8744960} a^{4} - \frac{5483}{68320} a^{3} - \frac{147117}{624640} a^{2} + \frac{1494485}{3497984} a + \frac{2126843}{4372480}$, $\frac{1}{2571158998876160} a^{16} + \frac{28292823}{1285579499438080} a^{15} + \frac{277001587}{367308428410880} a^{14} - \frac{22228335103}{257115899887616} a^{13} - \frac{14212599139}{64278974971904} a^{12} + \frac{1266637480519}{183654214205440} a^{11} - \frac{1733749779821}{514231799775232} a^{10} - \frac{25719675030029}{1285579499438080} a^{9} + \frac{871532870433}{58435431792640} a^{8} + \frac{4157140036417}{1285579499438080} a^{7} - \frac{31592208392347}{367308428410880} a^{6} - \frac{256117884808237}{1285579499438080} a^{5} - \frac{4789515913041}{128557949943808} a^{4} + \frac{52968240920273}{183654214205440} a^{3} + \frac{487473388428441}{2571158998876160} a^{2} - \frac{208842185375499}{1285579499438080} a + \frac{1649365283529}{367308428410880}$, $\frac{1}{91222907066041414689550408229772228008470006876582734375157760} a^{17} - \frac{2183303538992265587153657040143687486223074029}{18244581413208282937910081645954445601694001375316546875031552} a^{16} + \frac{1691145213498609146219249404409643280519175024473206387}{91222907066041414689550408229772228008470006876582734375157760} a^{15} - \frac{1116705627047291760068896936057617585302480188396959171}{8292991551458310426322764384524748000770000625143884943196160} a^{14} + \frac{1243311598359199689013943046707741100959313150053206536267}{4146495775729155213161382192262374000385000312571942471598080} a^{13} - \frac{33901128915213953043789914526821532919611236358940208213}{480120563505481129945002148577748568465631615139909128290304} a^{12} + \frac{403557314210744874171310454885098636949755403001747496349473}{91222907066041414689550408229772228008470006876582734375157760} a^{11} - \frac{10793108008026447522612368249486959548977525003845292266989}{1658598310291662085264552876904949600154000125028776988639232} a^{10} - \frac{53684126900740666774629344940240941478098013234678549173789}{2400602817527405649725010742888742842328158075699545641451520} a^{9} - \frac{1048761668159290153963721342178728047043621360287772437846601}{45611453533020707344775204114886114004235003438291367187578880} a^{8} + \frac{6023963071477409763192103036927702393840988124850585779101861}{91222907066041414689550408229772228008470006876582734375157760} a^{7} + \frac{90416500667173414396493466233199695764424131469660678476839}{960241127010962259890004297155497136931263230279818256580608} a^{6} - \frac{282540050222099647832850927902252071204482658482967167824821}{4146495775729155213161382192262374000385000312571942471598080} a^{5} - \frac{875263270529922723085097900784346230129362070671519153311735}{9122290706604141468955040822977222800847000687658273437515776} a^{4} - \frac{27410907172038699074579615352114398901097247694401239239352153}{91222907066041414689550408229772228008470006876582734375157760} a^{3} - \frac{1883794023193041590250433876529211613134824077204145183113739}{13031843866577344955650058318538889715495715268083247767879680} a^{2} + \frac{3656626411200275417464173659160729508718049866338742463715401}{91222907066041414689550408229772228008470006876582734375157760} a + \frac{98909241147805613766697437188727106139465950400149343411199}{299091498577184966195247240097613862322852481562566342213632}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{42}\times C_{27006}$, which has order $1959987456$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4641319478.753615 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.3.219961.2, 3.3.469.1, 6.0.3040740864.3, 6.0.668844401186304.2, 9.9.4991256617582519389.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $67$ | 67.6.4.2 | $x^{6} - 67 x^{3} + 53868$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 67.12.10.3 | $x^{12} - 16147 x^{6} + 93083904$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |