Normalized defining polynomial
\( x^{18} + 42 x^{16} + 693 x^{14} + 5761 x^{12} + 26040 x^{10} + 65772 x^{8} + 90587 x^{6} + 61257 x^{4} + 15435 x^{2} + 1183 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-65701728236743660173798567=-\,3^{24}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{26} a^{15} - \frac{5}{26} a^{13} + \frac{5}{26} a^{11} + \frac{1}{26} a^{9} - \frac{1}{2} a^{8} + \frac{3}{13} a^{7} - \frac{2}{13} a^{5} - \frac{1}{2} a^{4} + \frac{9}{26} a^{3} + \frac{7}{26} a$, $\frac{1}{299554907626} a^{16} + \frac{19103418715}{149777453813} a^{14} - \frac{8841585484}{149777453813} a^{12} + \frac{4719374602}{149777453813} a^{10} - \frac{120369253375}{299554907626} a^{8} - \frac{25112408871}{299554907626} a^{6} - \frac{1}{2} a^{5} + \frac{18848889523}{299554907626} a^{4} - \frac{69146842147}{299554907626} a^{2} - \frac{1}{2} a + \frac{3260055272}{11521342601}$, $\frac{1}{299554907626} a^{17} + \frac{3642809627}{299554907626} a^{15} + \frac{2679757117}{149777453813} a^{13} - \frac{6801967999}{149777453813} a^{11} - \frac{396602105}{23042685202} a^{9} - \frac{41359560938}{149777453813} a^{7} - \frac{1}{2} a^{6} + \frac{3663773461}{149777453813} a^{5} - \frac{1}{2} a^{4} - \frac{40334092374}{149777453813} a^{3} - \frac{1}{2} a^{2} + \frac{142368150077}{299554907626} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{226378539}{299554907626} a^{17} - \frac{103001955}{23042685202} a^{16} - \frac{5229520677}{149777453813} a^{15} - \frac{4036960503}{23042685202} a^{14} - \frac{96653910129}{149777453813} a^{13} - \frac{30009282041}{11521342601} a^{12} - \frac{913315688136}{149777453813} a^{11} - \frac{423630165495}{23042685202} a^{10} - \frac{4684035413298}{149777453813} a^{9} - \frac{1472063919165}{23042685202} a^{8} - \frac{25738693040667}{299554907626} a^{7} - \frac{2481979166057}{23042685202} a^{6} - \frac{35760365449641}{299554907626} a^{5} - \frac{1765594056261}{23042685202} a^{4} - \frac{10699311536794}{149777453813} a^{3} - \frac{146579042862}{11521342601} a^{2} - \frac{1568013443199}{149777453813} a - \frac{7622000237}{23042685202} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 457078.455661 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_9:C_3$ (as 18T14):
| A solvable group of order 54 |
| The 22 conjugacy class representatives for $C_2\times C_9:C_3$ |
| Character table for $C_2\times C_9:C_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.9.3063651608241.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||