Normalized defining polynomial
\( x^{18} + 6 x^{16} + 27 x^{14} + 48 x^{12} + 27 x^{10} + 54 x^{8} - 315 x^{6} - 324 x^{4} + 324 x^{2} + 216 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-65503383620958031970304=-\,2^{33}\cdot 3^{27}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{6}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{7}$, $\frac{1}{72} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{8} + \frac{1}{24} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{144} a^{13} - \frac{1}{144} a^{12} - \frac{1}{48} a^{11} + \frac{1}{48} a^{10} + \frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{144} a^{14} - \frac{1}{24} a^{10} + \frac{1}{16} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{288} a^{15} - \frac{1}{288} a^{14} + \frac{1}{48} a^{11} - \frac{1}{48} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{96} a^{7} + \frac{1}{96} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{170784} a^{16} - \frac{401}{170784} a^{14} - \frac{217}{85392} a^{12} + \frac{193}{28464} a^{10} - \frac{541}{56928} a^{8} + \frac{1981}{56928} a^{6} - \frac{73}{593} a^{4} - \frac{707}{4744} a^{2} + \frac{373}{2372}$, $\frac{1}{341568} a^{17} - \frac{1}{341568} a^{16} - \frac{401}{341568} a^{15} + \frac{401}{341568} a^{14} - \frac{217}{170784} a^{13} + \frac{217}{170784} a^{12} + \frac{193}{56928} a^{11} - \frac{193}{56928} a^{10} + \frac{1401}{37952} a^{9} - \frac{1401}{37952} a^{8} - \frac{7507}{113856} a^{7} + \frac{7507}{113856} a^{6} - \frac{885}{4744} a^{5} + \frac{885}{4744} a^{4} - \frac{707}{9488} a^{3} + \frac{707}{9488} a^{2} - \frac{1999}{4744} a + \frac{1999}{4744}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3117.4002199827046 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\zeta_{9})^+\), 3.1.648.1, 6.0.40310784.2, 6.0.10077696.1, 9.3.272097792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| 3 | Data not computed | ||||||