Normalized defining polynomial
\( x^{18} - 6 x^{17} + 9 x^{16} + 6 x^{15} - 27 x^{14} - 12 x^{13} + 465 x^{12} - 1398 x^{11} + 2649 x^{10} - 3110 x^{9} + 2157 x^{8} + 1350 x^{7} - 4305 x^{6} + 5526 x^{5} - 3480 x^{4} - 120 x^{3} + 6528 x^{2} - 7680 x + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6550117143611896491465231=-\,3^{31}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{68} a^{14} + \frac{4}{17} a^{13} - \frac{13}{68} a^{12} + \frac{7}{68} a^{10} - \frac{1}{17} a^{9} + \frac{1}{68} a^{8} + \frac{3}{34} a^{7} - \frac{1}{4} a^{6} + \frac{7}{17} a^{5} + \frac{7}{68} a^{4} - \frac{3}{17} a^{3} + \frac{7}{68} a^{2} + \frac{5}{34} a + \frac{8}{17}$, $\frac{1}{2584} a^{15} - \frac{1}{323} a^{14} - \frac{91}{2584} a^{13} + \frac{5}{323} a^{12} - \frac{5}{136} a^{11} + \frac{101}{1292} a^{10} - \frac{39}{2584} a^{9} - \frac{13}{646} a^{8} - \frac{467}{2584} a^{7} - \frac{39}{323} a^{6} - \frac{563}{2584} a^{5} + \frac{295}{646} a^{4} - \frac{997}{2584} a^{3} + \frac{112}{323} a^{2} - \frac{9}{323} a + \frac{125}{323}$, $\frac{1}{764864} a^{16} - \frac{7}{382432} a^{15} - \frac{423}{764864} a^{14} + \frac{53455}{382432} a^{13} - \frac{65163}{764864} a^{12} - \frac{453}{191216} a^{11} - \frac{135695}{764864} a^{10} - \frac{78607}{382432} a^{9} + \frac{102825}{764864} a^{8} - \frac{36071}{382432} a^{7} + \frac{15277}{44992} a^{6} - \frac{18545}{382432} a^{5} - \frac{346657}{764864} a^{4} - \frac{9899}{20128} a^{3} + \frac{8515}{95608} a^{2} - \frac{619}{95608} a - \frac{4725}{11951}$, $\frac{1}{73680431697112228688384} a^{17} + \frac{978550546347997}{2167071520503300843776} a^{16} - \frac{14144631039093611127}{73680431697112228688384} a^{15} + \frac{27691646557106617715}{36840215848556114344192} a^{14} - \frac{4726018307117479240219}{73680431697112228688384} a^{13} - \frac{2139488982513767674731}{18420107924278057172096} a^{12} - \frac{9758375204008644064239}{73680431697112228688384} a^{11} + \frac{3793987477927413101685}{36840215848556114344192} a^{10} + \frac{2820751898679129006297}{73680431697112228688384} a^{9} - \frac{4242836501059472713379}{36840215848556114344192} a^{8} + \frac{124442807575467226623}{3877917457742748878336} a^{7} + \frac{7819569012910705752019}{36840215848556114344192} a^{6} - \frac{184278735436328930109}{1991363018840871045632} a^{5} - \frac{13127559606765618320165}{36840215848556114344192} a^{4} + \frac{122074428312677765103}{484739682217843609792} a^{3} + \frac{2281130207455030888097}{9210053962139028586048} a^{2} + \frac{118944765750073359013}{575628372633689286628} a - \frac{71917827451109428584}{143907093158422321657}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29831.8168774 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.351.1 x3, \(\Q(\zeta_{9})^+\), 6.0.4804839.1, 6.0.43243551.1, 6.0.43243551.2 x2, 9.3.31524548679.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.43243551.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |