Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 11 x^{15} + 21 x^{14} - 39 x^{13} + 60 x^{12} - 78 x^{11} + 93 x^{10} - 111 x^{9} + 126 x^{8} - 81 x^{7} + 38 x^{6} + 15 x^{5} + 21 x^{4} - 4 x^{3} - 3 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-653772075187500000000=-\,2^{8}\cdot 3^{21}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{1}{3} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{13} - \frac{1}{18} a^{12} - \frac{1}{6} a^{11} - \frac{1}{9} a^{9} + \frac{1}{6} a^{8} + \frac{2}{9} a^{6} - \frac{1}{6} a^{5} - \frac{1}{9} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{18} a - \frac{1}{6}$, $\frac{1}{414} a^{16} - \frac{7}{414} a^{15} - \frac{5}{414} a^{14} + \frac{1}{69} a^{13} + \frac{4}{207} a^{12} - \frac{29}{414} a^{11} - \frac{22}{207} a^{10} - \frac{13}{414} a^{9} - \frac{25}{414} a^{8} + \frac{41}{207} a^{7} - \frac{55}{414} a^{6} + \frac{1}{6} a^{5} + \frac{113}{414} a^{4} - \frac{4}{9} a^{3} - \frac{8}{207} a^{2} + \frac{53}{207} a + \frac{13}{414}$, $\frac{1}{877266} a^{17} - \frac{77}{67482} a^{16} + \frac{13669}{877266} a^{15} - \frac{9311}{438633} a^{14} + \frac{10109}{438633} a^{13} + \frac{1453}{38142} a^{12} - \frac{50377}{438633} a^{11} - \frac{5365}{38142} a^{10} + \frac{1939}{97474} a^{9} + \frac{3682}{19071} a^{8} - \frac{235709}{877266} a^{7} - \frac{153733}{877266} a^{6} - \frac{43391}{97474} a^{5} - \frac{54643}{438633} a^{4} + \frac{80722}{438633} a^{3} - \frac{402}{3749} a^{2} - \frac{110503}{877266} a - \frac{152189}{438633}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3418}{19071} a^{17} - \frac{593}{1467} a^{16} + \frac{25169}{38142} a^{15} - \frac{2296}{2119} a^{14} + \frac{78995}{38142} a^{13} - \frac{143317}{38142} a^{12} + \frac{60431}{12714} a^{11} - \frac{85229}{19071} a^{10} + \frac{7746}{2119} a^{9} - \frac{140819}{38142} a^{8} + \frac{58246}{19071} a^{7} + \frac{150080}{19071} a^{6} - \frac{400129}{38142} a^{5} + \frac{271123}{19071} a^{4} + \frac{26431}{12714} a^{3} + \frac{2441}{978} a^{2} - \frac{15269}{38142} a + \frac{21923}{38142} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3858.5081007539666 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.675.1 x3, 6.0.1366875.1, 9.3.4920750000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||