Normalized defining polynomial
\( x^{18} + 234 x^{16} - x^{15} + 21303 x^{14} - 237 x^{13} + 988554 x^{12} - 60570 x^{11} + 25847919 x^{10} - 5091888 x^{9} + 399193434 x^{8} - 189463887 x^{7} + 3750828353 x^{6} - 3134543427 x^{5} + 22666724232 x^{4} - 22003449974 x^{3} + 95124963726 x^{2} - 50842837434 x + 251122682539 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-65207117393079565410291669478441819083=-\,3^{27}\cdot 7^{15}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $126.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1449=3^{2}\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1449}(1,·)$, $\chi_{1449}(898,·)$, $\chi_{1449}(68,·)$, $\chi_{1449}(965,·)$, $\chi_{1449}(967,·)$, $\chi_{1449}(1034,·)$, $\chi_{1449}(206,·)$, $\chi_{1449}(1172,·)$, $\chi_{1449}(277,·)$, $\chi_{1449}(1243,·)$, $\chi_{1449}(415,·)$, $\chi_{1449}(482,·)$, $\chi_{1449}(484,·)$, $\chi_{1449}(1381,·)$, $\chi_{1449}(551,·)$, $\chi_{1449}(1448,·)$, $\chi_{1449}(689,·)$, $\chi_{1449}(760,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{181} a^{14} - \frac{29}{181} a^{13} - \frac{54}{181} a^{12} - \frac{9}{181} a^{11} - \frac{43}{181} a^{10} - \frac{38}{181} a^{9} + \frac{62}{181} a^{8} + \frac{59}{181} a^{7} + \frac{60}{181} a^{6} + \frac{40}{181} a^{5} - \frac{50}{181} a^{4} + \frac{87}{181} a^{3} - \frac{32}{181} a^{2} - \frac{47}{181} a + \frac{35}{181}$, $\frac{1}{410327} a^{15} + \frac{62817}{410327} a^{13} + \frac{129107}{410327} a^{12} - \frac{45373}{410327} a^{11} - \frac{192059}{410327} a^{10} + \frac{85116}{410327} a^{9} - \frac{169188}{410327} a^{8} + \frac{64397}{410327} a^{7} - \frac{193519}{410327} a^{6} + \frac{104461}{410327} a^{5} + \frac{31217}{410327} a^{4} + \frac{142223}{410327} a^{3} + \frac{154142}{410327} a^{2} - \frac{88208}{410327} a - \frac{200076}{410327}$, $\frac{1}{12527253356129} a^{16} - \frac{1834230}{12527253356129} a^{15} + \frac{13929247592}{12527253356129} a^{14} - \frac{1252586355732}{12527253356129} a^{13} - \frac{4774277509145}{12527253356129} a^{12} + \frac{3645067880969}{12527253356129} a^{11} + \frac{813171027144}{12527253356129} a^{10} - \frac{2993359217480}{12527253356129} a^{9} - \frac{2783834154364}{12527253356129} a^{8} + \frac{2807443583318}{12527253356129} a^{7} - \frac{3515182688622}{12527253356129} a^{6} - \frac{916435033723}{12527253356129} a^{5} - \frac{1933777673737}{12527253356129} a^{4} + \frac{5411948663759}{12527253356129} a^{3} - \frac{796152602934}{12527253356129} a^{2} + \frac{3104356512916}{12527253356129} a + \frac{651285035969}{12527253356129}$, $\frac{1}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{17} - \frac{2660215850714060414157414451468436872193885486792255973}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{16} + \frac{397983609416650915307012543195016516568824659258849136444980998}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{15} - \frac{1841269010368798988283092258842028750935417629171043207526440494461}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{14} - \frac{478650696577164752142577782326075376094095763894701891714223245333466}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{13} + \frac{65918657641086590418430787764135930568100639596393242900630496745145}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{12} - \frac{243474746954388398599431175739170015353401989036492367222126670706236}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{11} - \frac{492218418161123112481223550291545343467872384354203739946383713799431}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{10} - \frac{39301164653695885027167319865387924785611988830073413592438693849419}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{9} + \frac{4335487772449085187810980436972878795151433049518559156293980237091}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{8} - \frac{321053426298330962109824744674569690872729126645938012429077859614714}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{7} + \frac{345361174250632389968101157872159628026638240728926278361234783389800}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{6} + \frac{818422958492091140991837137935207037966759216693769991257656638437507}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{5} + \frac{7854546413376227926917002423591713739342647121535878741775229399072}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{4} + \frac{177950798984400580123390209777616596857394067180357910668403355529732}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{3} + \frac{898662572862693851988306263586104695410901846324104986903946024530510}{1825660826359346397484253975278409470294936140978270426327462622711657} a^{2} - \frac{366795233924930703511596468350853523138182294594811137901070031393}{805320170427589941545767082169567476971740688565624360973737372171} a - \frac{730328724744047815753789905153104718382549174516156328782782000751940}{1825660826359346397484253975278409470294936140978270426327462622711657}$
Class group and class number
$C_{2}\times C_{2}\times C_{26}\times C_{24206}$, which has order $2517424$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-483}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 6.0.82142689923.4, 6.0.4024991806227.4, 6.0.4024991806227.3, 6.0.5521250763.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $23$ | 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |