Normalized defining polynomial
\( x^{18} - x^{17} + 77 x^{16} - 77 x^{15} + 2509 x^{14} - 2509 x^{13} + 45069 x^{12} - 45069 x^{11} + 487693 x^{10} - 487693 x^{9} + 3269901 x^{8} - 3269901 x^{7} + 13542669 x^{6} - 13542669 x^{5} + 34088205 x^{4} - 34088205 x^{3} + 52765965 x^{2} - 52765965 x + 57746701 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-649907439846766024629709761975683=-\,17^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(323=17\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{323}(256,·)$, $\chi_{323}(1,·)$, $\chi_{323}(322,·)$, $\chi_{323}(67,·)$, $\chi_{323}(135,·)$, $\chi_{323}(137,·)$, $\chi_{323}(203,·)$, $\chi_{323}(273,·)$, $\chi_{323}(84,·)$, $\chi_{323}(288,·)$, $\chi_{323}(33,·)$, $\chi_{323}(290,·)$, $\chi_{323}(35,·)$, $\chi_{323}(239,·)$, $\chi_{323}(50,·)$, $\chi_{323}(120,·)$, $\chi_{323}(186,·)$, $\chi_{323}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{14007941} a^{10} + \frac{5519006}{14007941} a^{9} + \frac{40}{14007941} a^{8} + \frac{2573042}{14007941} a^{7} + \frac{560}{14007941} a^{6} + \frac{2860622}{14007941} a^{5} + \frac{3200}{14007941} a^{4} + \frac{6488124}{14007941} a^{3} + \frac{6400}{14007941} a^{2} - \frac{3420604}{14007941} a + \frac{2048}{14007941}$, $\frac{1}{14007941} a^{11} + \frac{44}{14007941} a^{9} + \frac{5939858}{14007941} a^{8} + \frac{704}{14007941} a^{7} - \frac{6035718}{14007941} a^{6} + \frac{4928}{14007941} a^{5} - \frac{4325416}{14007941} a^{4} + \frac{14080}{14007941} a^{3} + \frac{2968198}{14007941} a^{2} + \frac{11264}{14007941} a + \frac{1484099}{14007941}$, $\frac{1}{14007941} a^{12} + \frac{1238591}{14007941} a^{9} - \frac{1056}{14007941} a^{8} + \frac{6821903}{14007941} a^{7} - \frac{19712}{14007941} a^{6} - \frac{4121315}{14007941} a^{5} - \frac{126720}{14007941} a^{4} - \frac{2350438}{14007941} a^{3} - \frac{270336}{14007941} a^{2} - \frac{2096676}{14007941} a - \frac{90112}{14007941}$, $\frac{1}{14007941} a^{13} - \frac{1248}{14007941} a^{9} - \frac{697914}{14007941} a^{8} - \frac{26624}{14007941} a^{7} + \frac{2664775}{14007941} a^{6} - \frac{209664}{14007941} a^{5} - \frac{1594335}{14007941} a^{4} - \frac{638976}{14007941} a^{3} - \frac{584470}{14007941} a^{2} - \frac{532480}{14007941} a - \frac{1197047}{14007941}$, $\frac{1}{14007941} a^{14} - \frac{4885398}{14007941} a^{9} + \frac{23296}{14007941} a^{8} + \frac{6002702}{14007941} a^{7} + \frac{489216}{14007941} a^{6} - \frac{3563034}{14007941} a^{5} + \frac{3354624}{14007941} a^{4} + \frac{4384}{14007941} a^{3} - \frac{6553221}{14007941} a^{2} + \frac{2311166}{14007941} a + \frac{2555904}{14007941}$, $\frac{1}{14007941} a^{15} + \frac{29120}{14007941} a^{9} + \frac{5307448}{14007941} a^{8} + \frac{698880}{14007941} a^{7} + \frac{711351}{14007941} a^{6} + \frac{5870592}{14007941} a^{5} + \frac{415828}{14007941} a^{4} + \frac{4628859}{14007941} a^{3} + \frac{3134054}{14007941} a^{2} + \frac{1966459}{14007941} a + \frac{3625230}{14007941}$, $\frac{1}{14007941} a^{16} + \frac{4959821}{14007941} a^{9} - \frac{465920}{14007941} a^{8} + \frac{2204720}{14007941} a^{7} + \frac{3571333}{14007941} a^{6} + \frac{4328315}{14007941} a^{5} - \frac{4507495}{14007941} a^{4} - \frac{5936559}{14007941} a^{3} - \frac{2298308}{14007941} a^{2} + \frac{1145259}{14007941} a - \frac{3605996}{14007941}$, $\frac{1}{14007941} a^{17} - \frac{609280}{14007941} a^{9} - \frac{76946}{14007941} a^{8} - \frac{1589627}{14007941} a^{7} + \frac{400873}{14007941} a^{6} + \frac{3600690}{14007941} a^{5} - \frac{6366606}{14007941} a^{4} + \frac{2609312}{14007941} a^{3} + \frac{285165}{14007941} a^{2} + \frac{2283148}{14007941} a - \frac{1956183}{14007941}$
Class group and class number
$C_{38836}$, which has order $38836$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-323}) \), 3.3.361.1, 6.0.12165074387.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | R | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 19 | Data not computed | ||||||