Normalized defining polynomial
\( x^{18} + 3 x^{16} - 6 x^{14} + 14 x^{12} + 153 x^{10} + 69 x^{8} - 108 x^{6} + 1197 x^{4} + 1539 x^{2} + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6477684722397364709666403=-\,3^{9}\cdot 367^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{10} + \frac{1}{18} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{11} + \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{558} a^{14} + \frac{5}{279} a^{12} + \frac{1}{18} a^{10} + \frac{29}{186} a^{8} - \frac{1}{6} a^{7} + \frac{1}{31} a^{6} + \frac{1}{6} a^{5} + \frac{19}{93} a^{4} - \frac{1}{2} a^{3} + \frac{21}{62} a^{2} + \frac{17}{62}$, $\frac{1}{558} a^{15} + \frac{5}{279} a^{13} + \frac{1}{18} a^{11} - \frac{1}{93} a^{9} + \frac{1}{31} a^{7} - \frac{1}{6} a^{6} + \frac{23}{62} a^{5} - \frac{1}{3} a^{4} + \frac{21}{62} a^{3} - \frac{1}{2} a^{2} - \frac{7}{31} a - \frac{1}{2}$, $\frac{1}{8016786} a^{16} - \frac{5}{296918} a^{14} + \frac{10997}{2672262} a^{12} + \frac{22348}{4008393} a^{10} - \frac{70486}{445377} a^{8} - \frac{51268}{445377} a^{6} - \frac{1}{2} a^{5} + \frac{111772}{445377} a^{4} - \frac{1}{2} a^{3} + \frac{212515}{890754} a^{2} - \frac{1}{2} a + \frac{61615}{148459}$, $\frac{1}{8016786} a^{17} - \frac{5}{296918} a^{15} + \frac{10997}{2672262} a^{13} + \frac{22348}{4008393} a^{11} + \frac{7487}{890754} a^{9} - \frac{1}{6} a^{8} - \frac{51268}{445377} a^{7} - \frac{1}{6} a^{6} + \frac{75085}{890754} a^{5} + \frac{1}{3} a^{4} + \frac{212515}{890754} a^{3} - \frac{25229}{296918} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 348966.988693 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_4$ (as 18T69):
| A solvable group of order 144 |
| The 15 conjugacy class representatives for $S_3\times S_4$ |
| Character table for $S_3\times S_4$ |
Intermediate fields
| 3.1.367.1, 3.3.1101.1, 6.0.3636603.2, 9.3.489810421467.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 367 | Data not computed | ||||||