Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} + 2 x^{15} - 14 x^{13} + 7 x^{12} - 104 x^{11} + 114 x^{10} - 4 x^{9} + 267 x^{8} - 320 x^{7} - 39 x^{6} - 120 x^{5} + 316 x^{4} - 60 x^{3} - 12 x^{2} - 72 x + 36 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-64774404297457079943168=-\,2^{20}\cdot 3^{9}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{36} a^{15} - \frac{1}{18} a^{14} + \frac{1}{36} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{3} a^{10} - \frac{13}{36} a^{9} - \frac{2}{9} a^{8} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} + \frac{11}{36} a^{5} + \frac{1}{3} a^{4} - \frac{11}{36} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{5004} a^{16} - \frac{67}{5004} a^{15} - \frac{421}{5004} a^{14} + \frac{611}{5004} a^{13} + \frac{10}{417} a^{12} + \frac{383}{1251} a^{11} + \frac{23}{5004} a^{10} + \frac{221}{556} a^{9} - \frac{1139}{2502} a^{8} - \frac{97}{1251} a^{7} + \frac{775}{1668} a^{6} + \frac{833}{5004} a^{5} - \frac{2471}{5004} a^{4} + \frac{1117}{5004} a^{3} + \frac{85}{834} a^{2} + \frac{95}{834} a + \frac{43}{278}$, $\frac{1}{1573414095096} a^{17} + \frac{750397}{786707047548} a^{16} - \frac{406528769}{174823788344} a^{15} + \frac{785305487}{131117841258} a^{14} + \frac{41110537955}{786707047548} a^{13} + \frac{7784014715}{131117841258} a^{12} + \frac{44045231887}{1573414095096} a^{11} + \frac{17810014841}{43705947086} a^{10} - \frac{76293962566}{196676761887} a^{9} - \frac{118005979021}{262235682516} a^{8} - \frac{1162328699}{11319525864} a^{7} - \frac{830805251}{131117841258} a^{6} + \frac{49371988873}{524471365032} a^{5} + \frac{294756530789}{786707047548} a^{4} - \frac{368685278809}{786707047548} a^{3} + \frac{88988077775}{262235682516} a^{2} - \frac{20030686558}{65558920629} a - \frac{10789416013}{43705947086}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1202581207}{3773175288} a^{17} + \frac{2274077873}{5659762932} a^{16} - \frac{14579681003}{11319525864} a^{15} - \frac{2257593601}{1414940733} a^{14} - \frac{6453489799}{5659762932} a^{13} + \frac{10420276097}{2829881466} a^{12} + \frac{2251537223}{3773175288} a^{11} + \frac{47572540717}{1414940733} a^{10} - \frac{16040002834}{1414940733} a^{9} - \frac{44462828365}{5659762932} a^{8} - \frac{1029125604179}{11319525864} a^{7} + \frac{48352453399}{1414940733} a^{6} + \frac{49449474177}{1257725096} a^{5} + \frac{376386064349}{5659762932} a^{4} - \frac{32323516635}{628862548} a^{3} - \frac{12751216365}{628862548} a^{2} - \frac{1479450890}{157215637} a + \frac{5067668697}{314431274} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117833.92441176013 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.484.1, 3.1.1452.1 x3, 6.0.6324912.2, 6.0.6324912.1, 9.1.48980118528.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |