Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 228 x^{14} - 420 x^{13} + 696 x^{12} - 978 x^{11} + 1143 x^{10} - 1183 x^{9} + 1143 x^{8} - 978 x^{7} + 696 x^{6} - 420 x^{5} + 228 x^{4} - 108 x^{3} + 39 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-647677499181836009472=-\,2^{20}\cdot 3^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{106} a^{15} + \frac{19}{106} a^{14} + \frac{8}{53} a^{13} + \frac{23}{106} a^{12} + \frac{29}{106} a^{11} - \frac{20}{53} a^{10} + \frac{47}{106} a^{9} + \frac{37}{106} a^{8} + \frac{37}{106} a^{7} - \frac{3}{53} a^{6} + \frac{13}{106} a^{5} + \frac{29}{106} a^{4} - \frac{15}{53} a^{3} - \frac{37}{106} a^{2} + \frac{19}{106} a - \frac{26}{53}$, $\frac{1}{212} a^{16} + \frac{13}{106} a^{14} - \frac{4}{53} a^{13} + \frac{4}{53} a^{12} - \frac{2}{53} a^{11} - \frac{47}{106} a^{10} + \frac{49}{106} a^{9} + \frac{23}{212} a^{8} - \frac{5}{53} a^{7} + \frac{37}{106} a^{6} - \frac{3}{106} a^{5} - \frac{26}{53} a^{4} + \frac{14}{53} a^{3} + \frac{43}{106} a^{2} - \frac{21}{106} a - \frac{19}{212}$, $\frac{1}{212} a^{17} + \frac{5}{53} a^{14} + \frac{6}{53} a^{13} + \frac{15}{106} a^{12} - \frac{7}{53} a^{10} + \frac{73}{212} a^{9} - \frac{7}{53} a^{8} - \frac{10}{53} a^{7} + \frac{11}{53} a^{6} - \frac{9}{106} a^{5} + \frac{11}{53} a^{4} + \frac{9}{106} a^{3} + \frac{18}{53} a^{2} - \frac{89}{212} a - \frac{13}{106}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{942}{53} a^{17} - \frac{8007}{53} a^{16} + \frac{32632}{53} a^{15} - \frac{84600}{53} a^{14} + \frac{169332}{53} a^{13} - \frac{303316}{53} a^{12} + \frac{489288}{53} a^{11} - \frac{650760}{53} a^{10} + \frac{710618}{53} a^{9} - \frac{707898}{53} a^{8} + \frac{669888}{53} a^{7} - \frac{534332}{53} a^{6} + \frac{340080}{53} a^{5} - \frac{190104}{53} a^{4} + \frac{99044}{53} a^{3} - \frac{40896}{53} a^{2} + \frac{10578}{53} a - \frac{1218}{53} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4456.90616557204 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.324.1, 3.1.108.1 x3, 6.0.314928.2, 6.0.34992.1, 9.1.14693280768.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||