Normalized defining polynomial
\( x^{18} - 9 x^{17} + 60 x^{16} - 276 x^{15} + 1059 x^{14} - 3297 x^{13} + 8326 x^{12} - 17001 x^{11} + 28578 x^{10} - 40029 x^{9} + 55638 x^{8} - 80625 x^{7} + 148498 x^{6} - 237165 x^{5} + 364521 x^{4} - 394488 x^{3} + 378474 x^{2} - 212265 x + 118815 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-64119276021132037084693359375=-\,3^{21}\cdot 5^{9}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{6} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{7} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} + \frac{3}{20} a^{8} - \frac{3}{20} a^{6} + \frac{1}{20} a^{4} - \frac{1}{2} a^{3} + \frac{9}{20} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{100} a^{13} + \frac{1}{100} a^{12} + \frac{1}{100} a^{11} + \frac{1}{100} a^{10} + \frac{13}{100} a^{9} - \frac{7}{100} a^{8} + \frac{13}{100} a^{7} + \frac{23}{100} a^{6} - \frac{49}{100} a^{5} + \frac{31}{100} a^{4} - \frac{29}{100} a^{3} + \frac{11}{100} a^{2} - \frac{1}{20} a + \frac{7}{20}$, $\frac{1}{80100} a^{14} - \frac{7}{80100} a^{13} - \frac{377}{80100} a^{12} + \frac{2353}{80100} a^{11} + \frac{541}{16020} a^{10} + \frac{4789}{80100} a^{9} + \frac{12259}{80100} a^{8} - \frac{11551}{80100} a^{7} - \frac{12083}{80100} a^{6} + \frac{841}{26700} a^{5} + \frac{8251}{26700} a^{4} - \frac{1883}{8900} a^{3} - \frac{5981}{26700} a^{2} - \frac{407}{1068} a - \frac{7}{15}$, $\frac{1}{240300} a^{15} + \frac{5}{3204} a^{13} + \frac{103}{48060} a^{12} + \frac{1319}{80100} a^{11} - \frac{167}{5340} a^{10} - \frac{4781}{48060} a^{9} - \frac{763}{16020} a^{8} - \frac{3479}{80100} a^{7} - \frac{89}{540} a^{6} + \frac{2881}{16020} a^{5} + \frac{4067}{16020} a^{4} + \frac{8143}{80100} a^{3} + \frac{6733}{16020} a^{2} + \frac{1171}{2670} a - \frac{11}{36}$, $\frac{1}{3206927254500} a^{16} - \frac{2}{801731813625} a^{15} - \frac{851857}{534487875750} a^{14} + \frac{17889067}{1603463627250} a^{13} + \frac{38489273503}{1603463627250} a^{12} - \frac{11803639391}{267243937875} a^{11} + \frac{727369319}{320692725450} a^{10} - \frac{303911492459}{1603463627250} a^{9} - \frac{121414886}{10689757515} a^{8} - \frac{83112056138}{801731813625} a^{7} + \frac{213906938273}{1603463627250} a^{6} - \frac{70747803317}{178162625250} a^{5} + \frac{10652325779}{267243937875} a^{4} + \frac{23232585719}{178162625250} a^{3} + \frac{342494942207}{1068975751500} a^{2} - \frac{21620998037}{53448787575} a - \frac{327468887}{1201096350}$, $\frac{1}{7751143174126500} a^{17} + \frac{4}{25837143913755} a^{16} - \frac{349543793}{3875571587063250} a^{15} - \frac{233432638}{1937785793531625} a^{14} - \frac{682366234951}{287079376819500} a^{13} + \frac{9603397504163}{3875571587063250} a^{12} - \frac{73374961945861}{7751143174126500} a^{11} - \frac{17410029576763}{1291857195687750} a^{10} - \frac{22427758542059}{7751143174126500} a^{9} - \frac{129296524700723}{1937785793531625} a^{8} + \frac{543272280583}{3827725024260} a^{7} - \frac{198834463862632}{1937785793531625} a^{6} - \frac{226964898254417}{516742878275100} a^{5} + \frac{71037009419083}{645928597843875} a^{4} - \frac{120189226253089}{645928597843875} a^{3} + \frac{138007843270201}{430619065229250} a^{2} - \frac{56193004897}{11483175072780} a + \frac{529966416232}{1451524938975}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13204003.8996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.1815.1 x3, 3.1.16335.2 x3, 3.1.135.1 x3, 3.1.16335.1 x3, 6.0.49413375.1, 6.0.4002483375.3, 6.0.273375.1, 6.0.4002483375.2, 9.1.65380565930625.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |