Normalized defining polynomial
\( x^{18} - 6 x^{17} + 10 x^{16} + 10 x^{15} - 28 x^{14} - 36 x^{13} + 187 x^{12} + 518 x^{11} + 818 x^{10} + 896 x^{9} + 818 x^{8} + 518 x^{7} + 187 x^{6} - 36 x^{5} - 28 x^{4} + 10 x^{3} + 10 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-63502608684277862177845248=-\,2^{12}\cdot 3^{9}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{732} a^{14} + \frac{23}{732} a^{13} + \frac{7}{366} a^{12} - \frac{41}{183} a^{11} + \frac{71}{366} a^{10} - \frac{20}{183} a^{9} + \frac{25}{122} a^{8} - \frac{5}{122} a^{7} + \frac{25}{122} a^{6} + \frac{143}{366} a^{5} - \frac{56}{183} a^{4} - \frac{41}{183} a^{3} - \frac{169}{732} a^{2} - \frac{343}{732} a + \frac{46}{183}$, $\frac{1}{22692} a^{15} - \frac{1}{7564} a^{14} - \frac{512}{5673} a^{13} + \frac{705}{3782} a^{12} + \frac{1376}{5673} a^{11} + \frac{1070}{5673} a^{10} - \frac{1813}{11346} a^{9} + \frac{313}{1891} a^{8} + \frac{521}{3782} a^{7} - \frac{3271}{11346} a^{6} - \frac{2915}{11346} a^{5} - \frac{415}{5673} a^{4} + \frac{2341}{7564} a^{3} - \frac{8027}{22692} a^{2} + \frac{419}{3782} a - \frac{5503}{11346}$, $\frac{1}{136152} a^{16} + \frac{1}{136152} a^{15} - \frac{7}{68076} a^{14} + \frac{14731}{136152} a^{13} + \frac{22703}{136152} a^{12} + \frac{1055}{17019} a^{11} + \frac{283}{1891} a^{10} + \frac{9227}{68076} a^{9} + \frac{575}{1891} a^{8} + \frac{17675}{68076} a^{7} - \frac{4511}{11346} a^{6} - \frac{13127}{34038} a^{5} - \frac{49465}{136152} a^{4} + \frac{47593}{136152} a^{3} - \frac{11821}{68076} a^{2} - \frac{50333}{136152} a - \frac{24959}{136152}$, $\frac{1}{136152} a^{17} - \frac{1}{45384} a^{15} + \frac{5}{45384} a^{14} - \frac{7093}{68076} a^{13} - \frac{33067}{136152} a^{12} - \frac{7753}{34038} a^{11} + \frac{2585}{68076} a^{10} - \frac{1169}{68076} a^{9} - \frac{27361}{68076} a^{8} - \frac{9803}{68076} a^{7} - \frac{139}{549} a^{6} + \frac{19387}{136152} a^{5} - \frac{17603}{68076} a^{4} + \frac{13399}{45384} a^{3} - \frac{7463}{45384} a^{2} - \frac{281}{3782} a - \frac{19693}{136152}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7949}{22692} a^{17} + \frac{44117}{22692} a^{16} - \frac{58097}{22692} a^{15} - \frac{116239}{22692} a^{14} + \frac{195353}{22692} a^{13} + \frac{122031}{7564} a^{12} - \frac{679631}{11346} a^{11} - \frac{2368553}{11346} a^{10} - \frac{696053}{1891} a^{9} - \frac{2589845}{5673} a^{8} - \frac{2576669}{5673} a^{7} - \frac{1308775}{3782} a^{6} - \frac{4125737}{22692} a^{5} - \frac{1043663}{22692} a^{4} + \frac{1103}{732} a^{3} - \frac{7397}{22692} a^{2} - \frac{47425}{22692} a + \frac{6875}{7564} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 508194.463043 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.11532.1 x3, 3.3.961.1, 6.0.398961072.1, 6.0.24935067.1, 6.0.415152.1 x2, 9.3.1533606360768.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.415152.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |