Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 198 x^{14} - 210 x^{13} + 220 x^{12} - 852 x^{11} + 2544 x^{10} - 4338 x^{9} + 5814 x^{8} - 7926 x^{7} + 13099 x^{6} - 18939 x^{5} + 19809 x^{4} - 14058 x^{3} + 9468 x^{2} - 4752 x + 1728 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6347285018761982937208599123=-\,3^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{8} - \frac{1}{12} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{3}$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{5} + \frac{5}{24} a^{4} - \frac{7}{24} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{8} a^{5} - \frac{1}{12} a^{4} - \frac{1}{24} a^{3} + \frac{1}{6} a^{2}$, $\frac{1}{144} a^{12} + \frac{1}{72} a^{10} + \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} + \frac{11}{144} a^{6} + \frac{1}{6} a^{5} - \frac{13}{72} a^{4} - \frac{5}{48} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{144} a^{13} + \frac{1}{72} a^{11} - \frac{1}{48} a^{10} - \frac{1}{144} a^{7} + \frac{17}{72} a^{5} + \frac{1}{48} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1152} a^{14} + \frac{1}{1152} a^{13} + \frac{1}{576} a^{12} - \frac{1}{1152} a^{11} - \frac{7}{384} a^{10} - \frac{7}{192} a^{9} - \frac{37}{1152} a^{8} + \frac{11}{1152} a^{7} + \frac{17}{576} a^{6} + \frac{121}{1152} a^{5} - \frac{5}{384} a^{4} - \frac{9}{64} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{1152} a^{15} + \frac{1}{1152} a^{13} - \frac{1}{384} a^{12} - \frac{5}{288} a^{11} - \frac{7}{384} a^{10} + \frac{5}{1152} a^{9} - \frac{1}{24} a^{8} + \frac{23}{1152} a^{7} + \frac{29}{384} a^{6} - \frac{17}{144} a^{5} - \frac{49}{384} a^{4} + \frac{23}{64} a^{3} - \frac{25}{96} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{20809728} a^{16} - \frac{1}{2601216} a^{15} - \frac{2219}{5202432} a^{14} + \frac{973}{325152} a^{13} - \frac{11929}{3468288} a^{12} - \frac{47557}{2601216} a^{11} + \frac{20081}{3468288} a^{10} - \frac{416123}{10404864} a^{9} - \frac{70421}{2601216} a^{8} + \frac{64495}{2601216} a^{7} + \frac{163985}{3468288} a^{6} + \frac{606025}{2601216} a^{5} + \frac{914321}{20809728} a^{4} + \frac{1620757}{3468288} a^{3} - \frac{225965}{1734144} a^{2} + \frac{57001}{144512} a + \frac{9321}{36128}$, $\frac{1}{56789747712} a^{17} + \frac{113}{4732478976} a^{16} - \frac{4945451}{14197436928} a^{15} - \frac{81385}{394373248} a^{14} - \frac{85351019}{28394873856} a^{13} - \frac{435209}{147889968} a^{12} + \frac{227793395}{28394873856} a^{11} + \frac{196776395}{9464957952} a^{10} - \frac{9023215}{221834952} a^{9} - \frac{16312033}{788746496} a^{8} + \frac{1074756035}{28394873856} a^{7} - \frac{6718915}{591559872} a^{6} + \frac{9463671889}{56789747712} a^{5} + \frac{431414561}{3154985984} a^{4} - \frac{1242322619}{4732478976} a^{3} + \frac{37858687}{197186624} a^{2} + \frac{10694271}{49296656} a + \frac{10115037}{24648328}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{144099}{197186624} a^{17} + \frac{2449683}{394373248} a^{16} - \frac{11149223}{443669904} a^{15} + \frac{9500435}{147889968} a^{14} - \frac{46247657}{443669904} a^{13} + \frac{47374457}{591559872} a^{12} - \frac{38118467}{443669904} a^{11} + \frac{325798451}{591559872} a^{10} - \frac{2738540605}{1774679616} a^{9} + \frac{652623833}{295779936} a^{8} - \frac{293295781}{110917476} a^{7} + \frac{2196812551}{591559872} a^{6} - \frac{11961780337}{1774679616} a^{5} + \frac{10970630825}{1183119744} a^{4} - \frac{4395510373}{591559872} a^{3} + \frac{324815003}{98593312} a^{2} - \frac{56597075}{24648328} a + \frac{8262617}{6162082} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5831495.31751 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24843.1 x3, 3.3.8281.1, 6.0.1851523947.3, 6.0.223587.2 x2, 6.0.1851523947.2, 9.3.15332469805107.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.223587.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |