Normalized defining polynomial
\( x^{18} + 20 x^{16} - 16 x^{15} + 297 x^{14} - 206 x^{13} + 1810 x^{12} - 984 x^{11} + 7777 x^{10} - 2850 x^{9} + 15631 x^{8} + 1270 x^{7} + 19813 x^{6} - 328 x^{5} + 10076 x^{4} - 592 x^{3} + 3856 x^{2} - 480 x + 64 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6347285018761982937208599123=-\,3^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(273=3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{273}(256,·)$, $\chi_{273}(1,·)$, $\chi_{273}(107,·)$, $\chi_{273}(263,·)$, $\chi_{273}(74,·)$, $\chi_{273}(79,·)$, $\chi_{273}(16,·)$, $\chi_{273}(211,·)$, $\chi_{273}(22,·)$, $\chi_{273}(92,·)$, $\chi_{273}(29,·)$, $\chi_{273}(100,·)$, $\chi_{273}(170,·)$, $\chi_{273}(235,·)$, $\chi_{273}(172,·)$, $\chi_{273}(113,·)$, $\chi_{273}(53,·)$, $\chi_{273}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{14} + \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} + \frac{5}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{4} a^{4} + \frac{1}{6} a^{3} + \frac{5}{12} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{50616} a^{15} - \frac{1052}{6327} a^{13} + \frac{1327}{12654} a^{12} + \frac{2911}{16872} a^{11} + \frac{2521}{25308} a^{10} - \frac{413}{2812} a^{9} + \frac{929}{4218} a^{8} - \frac{403}{50616} a^{7} + \frac{41}{8436} a^{6} - \frac{21857}{50616} a^{5} - \frac{485}{1332} a^{4} + \frac{5065}{50616} a^{3} - \frac{4421}{12654} a^{2} + \frac{1031}{2109} a - \frac{2662}{6327}$, $\frac{1}{54968976} a^{16} + \frac{83}{27484488} a^{15} + \frac{5}{13742244} a^{14} + \frac{50695}{254486} a^{13} + \frac{3192889}{54968976} a^{12} - \frac{111311}{6871122} a^{11} - \frac{373997}{27484488} a^{10} + \frac{22523}{4580748} a^{9} - \frac{2629351}{54968976} a^{8} - \frac{2875}{723276} a^{7} - \frac{16464965}{54968976} a^{6} + \frac{23326}{1145187} a^{5} + \frac{4490603}{18322992} a^{4} + \frac{9113287}{27484488} a^{3} + \frac{139411}{723276} a^{2} - \frac{1176623}{3435561} a + \frac{1609666}{3435561}$, $\frac{1}{57051954497300033729376} a^{17} + \frac{37319006788349}{7131494312162504216172} a^{16} - \frac{119051958642392377}{14262988624325008432344} a^{15} + \frac{16735908616125873841}{792388256906944912908} a^{14} - \frac{6733583922789123860375}{57051954497300033729376} a^{13} - \frac{4578549352118446360499}{28525977248650016864688} a^{12} - \frac{2498023691511885358859}{28525977248650016864688} a^{11} + \frac{100288653717589894616}{594291192680208684681} a^{10} + \frac{1823866922213458693361}{57051954497300033729376} a^{9} + \frac{334625379979588836913}{1501367223613158782352} a^{8} + \frac{6528795451801680127303}{57051954497300033729376} a^{7} + \frac{1851449452673647957745}{9508659082883338954896} a^{6} + \frac{162594491873200446567}{2113035351751853101088} a^{5} - \frac{1695345213900096278609}{7131494312162504216172} a^{4} + \frac{113765588854308518611}{750683611806579391176} a^{3} + \frac{185056620711502465619}{375341805903289695588} a^{2} - \frac{313781748392017689301}{1782873578040626054043} a - \frac{82958857084175263165}{594291192680208684681}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{24446932299421959}{11674228462717420448} a^{17} + \frac{296939433887827}{4377835673519032668} a^{16} - \frac{365920779614098829}{8755671347038065336} a^{15} + \frac{152042758276988009}{4377835673519032668} a^{14} - \frac{21759521690497023965}{35022685388152261344} a^{13} + \frac{7836709499734490303}{17511342694076130672} a^{12} - \frac{66134388845569716973}{17511342694076130672} a^{11} + \frac{2328789676888680184}{1094458918379758167} a^{10} - \frac{9941474005092465101}{614433076985127392} a^{9} + \frac{108505622889031566329}{17511342694076130672} a^{8} - \frac{1127624512393037562235}{35022685388152261344} a^{7} - \frac{48158422219520397431}{17511342694076130672} a^{6} - \frac{1401818185963852548889}{35022685388152261344} a^{5} + \frac{125711044367359535}{230412403869422772} a^{4} - \frac{58838211147321113329}{2918557115679355112} a^{3} - \frac{2825556066484140763}{4377835673519032668} a^{2} - \frac{16647209995558651861}{2188917836759516334} a + \frac{54495262354813001}{57603100967355693} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{7})^+\), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, 6.0.64827.1, 6.0.1851523947.2, 6.0.1851523947.1, 6.0.771147.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |