Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 225 x^{14} - 399 x^{13} + 832 x^{12} - 2067 x^{11} + 4146 x^{10} - 5715 x^{9} + 4383 x^{8} + 417 x^{7} + 535 x^{6} - 10974 x^{5} + 19080 x^{4} - 15975 x^{3} + 6264 x^{2} - 675 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6347285018761982937208599123=-\,3^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{10} - \frac{1}{9} a^{7} - \frac{4}{27} a^{6} - \frac{4}{9} a^{5} + \frac{7}{27} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{11} - \frac{1}{9} a^{8} - \frac{4}{27} a^{7} - \frac{1}{9} a^{6} + \frac{7}{27} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{297} a^{14} + \frac{4}{297} a^{13} + \frac{5}{297} a^{12} - \frac{16}{297} a^{11} - \frac{4}{99} a^{10} - \frac{2}{99} a^{9} + \frac{38}{297} a^{8} - \frac{28}{297} a^{7} - \frac{2}{297} a^{6} + \frac{37}{297} a^{5} + \frac{41}{99} a^{4} + \frac{5}{11} a^{3} - \frac{13}{33} a^{2} - \frac{7}{33} a - \frac{2}{11}$, $\frac{1}{297} a^{15} - \frac{1}{99} a^{12} + \frac{8}{297} a^{11} + \frac{1}{33} a^{10} - \frac{4}{297} a^{9} - \frac{5}{99} a^{8} - \frac{1}{9} a^{7} - \frac{7}{99} a^{6} - \frac{113}{297} a^{5} - \frac{20}{99} a^{4} - \frac{43}{99} a^{3} - \frac{10}{33} a^{2} - \frac{1}{3} a - \frac{3}{11}$, $\frac{1}{560136951} a^{16} - \frac{8}{560136951} a^{15} - \frac{745190}{560136951} a^{14} + \frac{5216470}{560136951} a^{13} - \frac{8214512}{560136951} a^{12} - \frac{18527402}{560136951} a^{11} - \frac{24687832}{560136951} a^{10} - \frac{18061573}{560136951} a^{9} + \frac{8671346}{560136951} a^{8} + \frac{30175490}{560136951} a^{7} - \frac{50141101}{560136951} a^{6} + \frac{172485506}{560136951} a^{5} - \frac{10051280}{186712317} a^{4} - \frac{3691384}{16973847} a^{3} - \frac{697990}{62237439} a^{2} + \frac{627073}{5657949} a + \frac{1205579}{6915271}$, $\frac{1}{208931082723} a^{17} + \frac{178}{208931082723} a^{16} - \frac{36580355}{208931082723} a^{15} - \frac{216372122}{208931082723} a^{14} + \frac{339674518}{208931082723} a^{13} - \frac{2808149261}{208931082723} a^{12} - \frac{8238549628}{208931082723} a^{11} + \frac{751851344}{208931082723} a^{10} + \frac{8182004813}{208931082723} a^{9} - \frac{10557378181}{208931082723} a^{8} - \frac{4271015323}{208931082723} a^{7} - \frac{26699059129}{208931082723} a^{6} - \frac{9999077293}{23214564747} a^{5} - \frac{7529772746}{23214564747} a^{4} - \frac{5517563509}{23214564747} a^{3} - \frac{2484790973}{7738188249} a^{2} + \frac{1364842108}{7738188249} a - \frac{2442302173}{7738188249}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{273282}{21317323} a^{17} - \frac{2322897}{21317323} a^{16} + \frac{257657692}{575567721} a^{15} - \frac{226022770}{191855907} a^{14} + \frac{1360044094}{575567721} a^{13} - \frac{787051954}{191855907} a^{12} + \frac{5145629038}{575567721} a^{11} - \frac{4331616916}{191855907} a^{10} + \frac{24822274466}{575567721} a^{9} - \frac{10540719332}{191855907} a^{8} + \frac{19882022810}{575567721} a^{7} + \frac{3046293190}{191855907} a^{6} + \frac{10170609104}{575567721} a^{5} - \frac{24505195901}{191855907} a^{4} + \frac{35562483478}{191855907} a^{3} - \frac{2792178854}{21317323} a^{2} + \frac{2405792693}{63951969} a - \frac{35650823}{21317323} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5151205.65339 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.24843.1 x3, 3.3.8281.2, 6.0.1851523947.3, 6.0.1851523947.1, 6.0.223587.1 x2, 9.3.15332469805107.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.223587.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |