Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 22 x^{15} + 51 x^{14} - 69 x^{13} + 44 x^{12} - 21 x^{11} + 225 x^{10} - 790 x^{9} + 1557 x^{8} - 2109 x^{7} + 2267 x^{6} - 2058 x^{5} + 1482 x^{4} - 760 x^{3} + 252 x^{2} - 48 x + 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6342687480463779704832=-\,2^{12}\cdot 3^{21}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{9} + \frac{1}{6} a^{6} - \frac{1}{2} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{10} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{2} a^{11} + \frac{1}{6} a^{8} - \frac{1}{2} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{12} - \frac{1}{3} a^{10} - \frac{5}{18} a^{9} + \frac{1}{3} a^{7} - \frac{5}{18} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{108} a^{16} - \frac{1}{54} a^{15} - \frac{1}{36} a^{14} + \frac{7}{108} a^{13} - \frac{1}{54} a^{12} + \frac{7}{36} a^{11} + \frac{7}{108} a^{10} + \frac{23}{54} a^{9} - \frac{11}{36} a^{8} + \frac{7}{108} a^{7} - \frac{8}{27} a^{6} - \frac{11}{36} a^{5} + \frac{7}{27} a^{4} + \frac{5}{54} a^{3} - \frac{5}{18} a^{2} + \frac{10}{27} a + \frac{13}{27}$, $\frac{1}{33531226452} a^{17} - \frac{757513}{620948638} a^{16} + \frac{450039365}{33531226452} a^{15} - \frac{1190556305}{33531226452} a^{14} - \frac{101393537}{2794268871} a^{13} - \frac{2322781591}{33531226452} a^{12} + \frac{4188661627}{33531226452} a^{11} - \frac{10686797}{96354099} a^{10} - \frac{4943475205}{33531226452} a^{9} + \frac{2750454139}{33531226452} a^{8} - \frac{288736651}{620948638} a^{7} + \frac{1931548643}{33531226452} a^{6} + \frac{2398623241}{8382806613} a^{5} + \frac{1324943632}{2794268871} a^{4} + \frac{6881779015}{16765613226} a^{3} + \frac{2545685806}{8382806613} a^{2} + \frac{1371790610}{2794268871} a - \frac{378681997}{8382806613}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6169751}{635013} a^{17} + \frac{59639741}{2540052} a^{16} - \frac{46559291}{635013} a^{15} + \frac{431877679}{2540052} a^{14} - \frac{999007069}{2540052} a^{13} + \frac{275650885}{635013} a^{12} - \frac{402326753}{2540052} a^{11} + \frac{8384575}{87588} a^{10} - \frac{1350469760}{635013} a^{9} + \frac{16336647265}{2540052} a^{8} - \frac{28659425533}{2540052} a^{7} + \frac{17328551765}{1270026} a^{6} - \frac{34605897167}{2540052} a^{5} + \frac{7326946733}{635013} a^{4} - \frac{9112564255}{1270026} a^{3} + \frac{3548886995}{1270026} a^{2} - \frac{373917613}{635013} a + \frac{32223454}{635013} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34377.40711821429 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.621.1, 3.1.108.1 x3, 6.0.1156923.1, 6.0.34992.1, 9.3.45980747712.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |