Normalized defining polynomial
\( x^{18} - 3 x^{17} + 17 x^{15} - 15 x^{14} - 33 x^{13} + 55 x^{12} + 78 x^{11} - 9 x^{10} - 95 x^{9} - 30 x^{8} + 108 x^{7} + 10 x^{6} - 75 x^{5} + 30 x^{4} + 12 x^{3} - 9 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6342687480463779704832=-\,2^{12}\cdot 3^{21}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{11} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{1735} a^{16} - \frac{11}{347} a^{15} + \frac{41}{1735} a^{14} - \frac{97}{1735} a^{13} + \frac{143}{1735} a^{12} + \frac{866}{1735} a^{11} - \frac{117}{1735} a^{10} + \frac{154}{1735} a^{9} - \frac{557}{1735} a^{8} + \frac{733}{1735} a^{7} + \frac{32}{1735} a^{6} + \frac{237}{1735} a^{5} - \frac{157}{1735} a^{4} - \frac{714}{1735} a^{3} - \frac{32}{347} a^{2} + \frac{864}{1735} a + \frac{807}{1735}$, $\frac{1}{261934685} a^{17} + \frac{13007}{52386937} a^{16} + \frac{1652504}{261934685} a^{15} - \frac{22892468}{261934685} a^{14} + \frac{1066069}{52386937} a^{13} + \frac{18387297}{261934685} a^{12} - \frac{35752696}{261934685} a^{11} + \frac{70838548}{261934685} a^{10} + \frac{26043155}{52386937} a^{9} - \frac{117418044}{261934685} a^{8} - \frac{92657091}{261934685} a^{7} + \frac{13088994}{52386937} a^{6} - \frac{23398083}{52386937} a^{5} - \frac{115311}{754855} a^{4} + \frac{29238551}{261934685} a^{3} - \frac{14391977}{52386937} a^{2} + \frac{92058683}{261934685} a + \frac{34807381}{261934685}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{119254}{150971} a^{17} + \frac{1652291}{754855} a^{16} + \frac{242316}{754855} a^{15} - \frac{9647388}{754855} a^{14} + \frac{6657566}{754855} a^{13} + \frac{18907477}{754855} a^{12} - \frac{26051242}{754855} a^{11} - \frac{48337746}{754855} a^{10} - \frac{13768522}{754855} a^{9} + \frac{43919171}{754855} a^{8} + \frac{30813514}{754855} a^{7} - \frac{8736406}{150971} a^{6} - \frac{2694832}{150971} a^{5} + \frac{5147247}{150971} a^{4} - \frac{12794734}{754855} a^{3} - \frac{24180}{150971} a^{2} + \frac{1218606}{754855} a - \frac{152726}{754855} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7152.852400477029 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 3.1.23.1, 6.0.14283.1, 6.0.34992.1, 9.1.15326915904.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |