Properties

Label 18.0.63168061000...0000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 5^{9}\cdot 37^{16}$
Root discriminant $110.78$
Ramified primes $2, 5, 37$
Class number $146978$ (GRH)
Class group $[146978]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![116015941, -10820664, 82523855, -8570496, 26177811, -2764682, 5120273, -471728, 707615, -56440, 71998, -6174, 5677, -498, 346, -26, 14, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 14*x^16 - 26*x^15 + 346*x^14 - 498*x^13 + 5677*x^12 - 6174*x^11 + 71998*x^10 - 56440*x^9 + 707615*x^8 - 471728*x^7 + 5120273*x^6 - 2764682*x^5 + 26177811*x^4 - 8570496*x^3 + 82523855*x^2 - 10820664*x + 116015941)
 
gp: K = bnfinit(x^18 - 2*x^17 + 14*x^16 - 26*x^15 + 346*x^14 - 498*x^13 + 5677*x^12 - 6174*x^11 + 71998*x^10 - 56440*x^9 + 707615*x^8 - 471728*x^7 + 5120273*x^6 - 2764682*x^5 + 26177811*x^4 - 8570496*x^3 + 82523855*x^2 - 10820664*x + 116015941, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 14 x^{16} - 26 x^{15} + 346 x^{14} - 498 x^{13} + 5677 x^{12} - 6174 x^{11} + 71998 x^{10} - 56440 x^{9} + 707615 x^{8} - 471728 x^{7} + 5120273 x^{6} - 2764682 x^{5} + 26177811 x^{4} - 8570496 x^{3} + 82523855 x^{2} - 10820664 x + 116015941 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-6316806100079189177484411392000000000=-\,2^{18}\cdot 5^{9}\cdot 37^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $110.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(740=2^{2}\cdot 5\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{740}(641,·)$, $\chi_{740}(581,·)$, $\chi_{740}(441,·)$, $\chi_{740}(1,·)$, $\chi_{740}(201,·)$, $\chi_{740}(719,·)$, $\chi_{740}(81,·)$, $\chi_{740}(599,·)$, $\chi_{740}(601,·)$, $\chi_{740}(699,·)$, $\chi_{740}(219,·)$, $\chi_{740}(419,·)$, $\chi_{740}(359,·)$, $\chi_{740}(519,·)$, $\chi_{740}(181,·)$, $\chi_{740}(121,·)$, $\chi_{740}(379,·)$, $\chi_{740}(639,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{43} a^{15} - \frac{12}{43} a^{14} - \frac{7}{43} a^{13} - \frac{13}{43} a^{12} + \frac{5}{43} a^{11} - \frac{17}{43} a^{10} + \frac{15}{43} a^{9} + \frac{13}{43} a^{8} - \frac{16}{43} a^{7} + \frac{18}{43} a^{6} - \frac{14}{43} a^{5} - \frac{17}{43} a^{4} - \frac{7}{43} a^{3} - \frac{5}{43} a^{2} - \frac{5}{43} a + \frac{18}{43}$, $\frac{1}{1333} a^{16} - \frac{9}{1333} a^{15} - \frac{6}{31} a^{14} + \frac{52}{1333} a^{13} - \frac{636}{1333} a^{12} - \frac{260}{1333} a^{11} - \frac{380}{1333} a^{10} - \frac{114}{1333} a^{9} - \frac{536}{1333} a^{8} - \frac{331}{1333} a^{7} + \frac{40}{1333} a^{6} + \frac{27}{1333} a^{5} - \frac{101}{1333} a^{4} - \frac{628}{1333} a^{3} + \frac{582}{1333} a^{2} + \frac{261}{1333} a - \frac{634}{1333}$, $\frac{1}{105967220779219475239421609200903858202199827507144519} a^{17} - \frac{11113998480459540906003607431854720738939481801197}{105967220779219475239421609200903858202199827507144519} a^{16} + \frac{824832474413476216418107735358186710236691277123582}{105967220779219475239421609200903858202199827507144519} a^{15} + \frac{43749452225517368339118114585724778459757676538152910}{105967220779219475239421609200903858202199827507144519} a^{14} + \frac{18089109880166997155688900220866395330228841028092019}{105967220779219475239421609200903858202199827507144519} a^{13} - \frac{52945765546046931690638372132406044544958449132645110}{105967220779219475239421609200903858202199827507144519} a^{12} - \frac{9910528170906939589870313166145537954560161986340574}{105967220779219475239421609200903858202199827507144519} a^{11} - \frac{7508321394786244403872027238204532036715716367606677}{105967220779219475239421609200903858202199827507144519} a^{10} - \frac{15678589880710059238814731172453450977321049875498307}{105967220779219475239421609200903858202199827507144519} a^{9} - \frac{25533598258656339313623521883469736531944643038278705}{105967220779219475239421609200903858202199827507144519} a^{8} - \frac{21871848842480002356988040060686737005490565658210974}{105967220779219475239421609200903858202199827507144519} a^{7} - \frac{23461408757662490800619384278622815584381759601147710}{105967220779219475239421609200903858202199827507144519} a^{6} + \frac{33072768238786388985533711609754174640343781585835635}{105967220779219475239421609200903858202199827507144519} a^{5} - \frac{32018148598860485448963177150539333305010954993472052}{105967220779219475239421609200903858202199827507144519} a^{4} - \frac{11321423840291689568592262479373402424063487808455311}{105967220779219475239421609200903858202199827507144519} a^{3} + \frac{37122151651138010381297231081071954147186493348074885}{105967220779219475239421609200903858202199827507144519} a^{2} - \frac{190589442885034978090913669394708657064767315415550}{105967220779219475239421609200903858202199827507144519} a - \frac{390605376500897753691628440806128042478008861328841}{2464353971609755238126083934904740888423251802491733}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{146978}$, which has order $146978$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 409151.3102125697 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-5}) \), 3.3.1369.1, 6.0.14993288000.2, 9.9.3512479453921.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ $18$ $18$ $18$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
37Data not computed