Normalized defining polynomial
\( x^{18} + 6 x^{16} - 3 x^{15} + 3 x^{14} + 42 x^{13} - 99 x^{12} + 189 x^{11} - 90 x^{10} - 245 x^{9} + 774 x^{8} - 1059 x^{7} + 1029 x^{6} - 714 x^{5} + 381 x^{4} - 153 x^{3} + 45 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6241137136607730639252951=-\,3^{20}\cdot 151^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{13} + \frac{2}{15} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{3} a^{5} - \frac{1}{15} a^{4} + \frac{4}{15} a^{3} - \frac{2}{5}$, $\frac{1}{15} a^{15} + \frac{1}{15} a^{13} - \frac{2}{15} a^{12} - \frac{2}{15} a^{9} - \frac{2}{5} a^{8} - \frac{7}{15} a^{6} - \frac{2}{5} a^{5} + \frac{1}{3} a^{4} - \frac{4}{15} a^{3} - \frac{2}{5} a - \frac{4}{15}$, $\frac{1}{75} a^{16} + \frac{1}{75} a^{15} - \frac{2}{75} a^{14} + \frac{1}{75} a^{13} - \frac{8}{75} a^{12} + \frac{2}{15} a^{11} - \frac{7}{75} a^{10} - \frac{8}{75} a^{9} + \frac{1}{5} a^{8} - \frac{13}{75} a^{7} - \frac{4}{75} a^{6} - \frac{31}{75} a^{5} - \frac{31}{75} a^{4} - \frac{31}{75} a^{3} - \frac{16}{75} a^{2} - \frac{4}{15} a - \frac{31}{75}$, $\frac{1}{62511375} a^{17} - \frac{358382}{62511375} a^{16} + \frac{357371}{12502275} a^{15} - \frac{1808263}{62511375} a^{14} - \frac{2346731}{62511375} a^{13} - \frac{1889966}{62511375} a^{12} + \frac{2377088}{62511375} a^{11} - \frac{532927}{62511375} a^{10} - \frac{3326192}{20837125} a^{9} + \frac{12119912}{62511375} a^{8} - \frac{1083767}{12502275} a^{7} - \frac{15460939}{62511375} a^{6} + \frac{18147352}{62511375} a^{5} - \frac{30022153}{62511375} a^{4} + \frac{28887752}{62511375} a^{3} + \frac{205183}{62511375} a^{2} + \frac{16989964}{62511375} a - \frac{7546019}{20837125}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 191258.989214 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for t18n273 |
| Character table for t18n273 |
Intermediate fields
| 9.3.203302813599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $151$ | 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |