Normalized defining polynomial
\( x^{18} - 4 x^{17} + 6 x^{16} + 13 x^{15} - 60 x^{14} + 106 x^{13} + 57 x^{12} - 464 x^{11} + 816 x^{10} + 751 x^{9} - 3007 x^{8} + 1460 x^{7} + 13835 x^{6} - 23448 x^{5} + 9184 x^{4} + 45881 x^{3} - 42377 x^{2} + 9060 x + 64439 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6232132441589948716796875=-\,5^{9}\cdot 11^{6}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{16219513414813841207552523505747357639} a^{17} + \frac{515327879469537694363169543538605900}{16219513414813841207552523505747357639} a^{16} - \frac{3469633935272332540758691654438707729}{16219513414813841207552523505747357639} a^{15} - \frac{1510334618525030145906592666324708179}{16219513414813841207552523505747357639} a^{14} + \frac{5581165722278561777688977626465128432}{16219513414813841207552523505747357639} a^{13} + \frac{8070483249444674551578570544710538999}{16219513414813841207552523505747357639} a^{12} + \frac{5093055236723632136841159024533728077}{16219513414813841207552523505747357639} a^{11} + \frac{7713834344163192691800497700807539044}{16219513414813841207552523505747357639} a^{10} - \frac{2428866673472439331743301165616486988}{16219513414813841207552523505747357639} a^{9} + \frac{391308958378256582456787805380610657}{16219513414813841207552523505747357639} a^{8} - \frac{5331737303970070142178751575846402364}{16219513414813841207552523505747357639} a^{7} + \frac{3402327538220287272034979653032404882}{16219513414813841207552523505747357639} a^{6} + \frac{1881589633718200951601609730414126338}{16219513414813841207552523505747357639} a^{5} - \frac{6548625012843570993155957152962428189}{16219513414813841207552523505747357639} a^{4} + \frac{126246753913755730200286818785848443}{16219513414813841207552523505747357639} a^{3} + \frac{3975789660745384506483312948275637701}{16219513414813841207552523505747357639} a^{2} + \frac{502839802229729221726533621584888246}{16219513414813841207552523505747357639} a - \frac{5378799713989972633117061022450469316}{16219513414813841207552523505747357639}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16850.5069708 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 28 conjugacy class representatives for t18n301 |
| Character table for t18n301 is not computed |
Intermediate fields
| 3.1.23.1, 6.0.184025875.1, 9.1.33860761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | $18$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | R | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.8.6.2 | $x^{8} - 1633 x^{4} + 1270129$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |