Normalized defining polynomial
\( x^{18} - 9 x^{17} + 234 x^{16} - 1668 x^{15} + 23940 x^{14} - 139104 x^{13} + 1424040 x^{12} - 6809130 x^{11} + 54623250 x^{10} - 213823058 x^{9} + 1405734741 x^{8} - 4409563914 x^{7} + 24309351321 x^{6} - 58323184659 x^{5} + 272500787439 x^{4} - 452550480084 x^{3} + 1795735413621 x^{2} - 1578496430709 x + 5291384827899 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-620651279815192016958464288029880859375=-\,3^{44}\cdot 5^{9}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2565=3^{3}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2565}(1,·)$, $\chi_{2565}(94,·)$, $\chi_{2565}(286,·)$, $\chi_{2565}(379,·)$, $\chi_{2565}(571,·)$, $\chi_{2565}(664,·)$, $\chi_{2565}(856,·)$, $\chi_{2565}(949,·)$, $\chi_{2565}(1141,·)$, $\chi_{2565}(1234,·)$, $\chi_{2565}(1426,·)$, $\chi_{2565}(1519,·)$, $\chi_{2565}(1711,·)$, $\chi_{2565}(1804,·)$, $\chi_{2565}(1996,·)$, $\chi_{2565}(2089,·)$, $\chi_{2565}(2281,·)$, $\chi_{2565}(2374,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{17} + \frac{381406682077455679292334258360897168563584341020961847053289123162193082}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{16} + \frac{310173888426439330788437193835767899406894137174884323827539842272545582}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{15} + \frac{316534757577341759569278269907274449816522002449810028504447520398144615}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{14} + \frac{357256031080575943934019822928414961620441913105112516273937761400961217}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{13} + \frac{158548718500711096027164133771936930278452481554045627009085054423781311}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{12} + \frac{295489877763713027459910488917443785309452007792009607342974091816682085}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{11} + \frac{223810171247144229818690479245722043568014678511247007285685768865029001}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{10} - \frac{106711259107639377977227254734214664955118676673438655213018448556985991}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{9} - \frac{353584008743677788337963809204284028979354391368944075524018182192841230}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{8} + \frac{11216620482742141102163084128853373465296962601197372695735979472119260}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{7} + \frac{334126772868174274337887570290334430335125605622654852223440502989908763}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{6} - \frac{348792758059342382509679427931380818849518098694596575087275276195372531}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{5} - \frac{193824707257663144693883133910545178551396643521075600082572920593758272}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{4} + \frac{23011579703928156694178420602891875729717799910237496324646473921762700}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{3} + \frac{375650421051066413351530022537299901704739809541182736901448552555939578}{805475591210723794640684998072729366912252982995046127129153313527835009} a^{2} - \frac{296739374670803291741352294687996228628224731586285921953575766075005710}{805475591210723794640684998072729366912252982995046127129153313527835009} a + \frac{4658807508971788064641190780837676404075456012933114044598808785958308}{15197652664353279144163867888164705036080244962170681643946288934487453}$
Class group and class number
$C_{2}\times C_{2}\times C_{7697016}$, which has order $30788064$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.03294431194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), \(\Q(\zeta_{9})^+\), 6.0.5625237375.5, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ |
| 3.9.22.8 | $x^{9} + 18 x^{7} + 24 x^{6} + 18 x^{5} + 18 x^{3} + 3$ | $9$ | $1$ | $22$ | $C_9$ | $[2, 3]$ | |
| 5 | Data not computed | ||||||
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |