Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 14 x^{15} - 81 x^{14} + 169 x^{13} - 258 x^{12} - 27 x^{11} + 1341 x^{10} - 4988 x^{9} + 10815 x^{8} - 11791 x^{7} + 6239 x^{6} + 9090 x^{5} - 16910 x^{4} + 16140 x^{3} + 2700 x^{2} - 5400 x + 8100 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-61773685738999443000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{3}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{27} a^{8} - \frac{1}{9} a^{6} - \frac{4}{27} a^{5} + \frac{5}{27} a^{4} - \frac{2}{27} a^{3} + \frac{7}{27} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{162} a^{12} + \frac{1}{81} a^{11} + \frac{1}{162} a^{9} + \frac{4}{81} a^{8} + \frac{23}{162} a^{6} + \frac{2}{81} a^{5} + \frac{10}{27} a^{4} + \frac{5}{162} a^{3} + \frac{26}{81} a^{2} + \frac{1}{27} a + \frac{2}{9}$, $\frac{1}{162} a^{13} + \frac{1}{81} a^{11} + \frac{7}{162} a^{10} - \frac{2}{81} a^{8} + \frac{5}{162} a^{7} - \frac{4}{27} a^{6} + \frac{5}{81} a^{5} - \frac{49}{162} a^{4} + \frac{2}{27} a^{3} - \frac{19}{81} a^{2} + \frac{1}{27} a - \frac{1}{9}$, $\frac{1}{486} a^{14} - \frac{1}{486} a^{12} + \frac{7}{486} a^{11} + \frac{1}{81} a^{10} - \frac{13}{486} a^{9} + \frac{11}{486} a^{8} - \frac{1}{81} a^{7} - \frac{59}{486} a^{6} + \frac{41}{486} a^{5} + \frac{7}{81} a^{4} - \frac{101}{486} a^{3} + \frac{2}{27} a^{2} - \frac{2}{9} a - \frac{4}{9}$, $\frac{1}{53460} a^{15} - \frac{13}{53460} a^{14} - \frac{5}{2673} a^{13} - \frac{91}{53460} a^{12} - \frac{901}{53460} a^{11} - \frac{293}{26730} a^{10} - \frac{871}{17820} a^{9} + \frac{2023}{53460} a^{8} - \frac{686}{13365} a^{7} - \frac{4823}{53460} a^{6} - \frac{1105}{10692} a^{5} + \frac{1697}{26730} a^{4} + \frac{2246}{13365} a^{3} - \frac{427}{1782} a^{2} + \frac{17}{297} a + \frac{35}{99}$, $\frac{1}{80991900} a^{16} - \frac{122}{20247975} a^{15} - \frac{10313}{16198380} a^{14} - \frac{63397}{26997300} a^{13} - \frac{93403}{40495950} a^{12} - \frac{1169371}{80991900} a^{11} - \frac{348913}{7362900} a^{10} + \frac{69457}{1840725} a^{9} - \frac{3076109}{80991900} a^{8} + \frac{57313}{8999100} a^{7} + \frac{899243}{8099190} a^{6} + \frac{3812029}{80991900} a^{5} + \frac{4657607}{40495950} a^{4} + \frac{4082}{24543} a^{3} - \frac{143599}{299970} a^{2} + \frac{1208}{149985} a - \frac{2399}{9999}$, $\frac{1}{11685430340100} a^{17} - \frac{41077}{11685430340100} a^{16} - \frac{3967993}{1947571723350} a^{15} + \frac{11081269019}{11685430340100} a^{14} + \frac{414728423}{285010496100} a^{13} - \frac{980813401}{973785861675} a^{12} + \frac{20489097467}{3895143446700} a^{11} + \frac{14720688989}{779028689340} a^{10} + \frac{62864764459}{1947571723350} a^{9} + \frac{232830473743}{11685430340100} a^{8} + \frac{165940398467}{11685430340100} a^{7} - \frac{32198495743}{973785861675} a^{6} - \frac{570763617221}{5842715170050} a^{5} - \frac{2740140194323}{5842715170050} a^{4} - \frac{23010226843}{194757172335} a^{3} - \frac{1978642118}{7213228605} a^{2} - \frac{505118462}{1967244165} a - \frac{306965642}{1442645721}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5567302}{28924332525} a^{17} - \frac{17535853}{28924332525} a^{16} + \frac{35365543}{38565776700} a^{15} + \frac{320357357}{115697330100} a^{14} - \frac{2272106}{141094305} a^{13} + \frac{247798129}{7713155340} a^{12} - \frac{1787670457}{38565776700} a^{11} - \frac{105082927}{19282888350} a^{10} + \frac{10115550743}{38565776700} a^{9} - \frac{109961557007}{115697330100} a^{8} + \frac{59367751406}{28924332525} a^{7} - \frac{83483745331}{38565776700} a^{6} + \frac{2116186211}{2103587820} a^{5} + \frac{68880808559}{57848665050} a^{4} - \frac{8609495837}{3856577670} a^{3} + \frac{38745623}{28567242} a^{2} + \frac{125997296}{214254315} a - \frac{1722530}{14283621} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 430259533.331 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 3.1.36300.1 x3, 3.1.1452.1 x3, 3.1.9075.1 x3, 6.0.270000.1, 6.0.3953070000.1, 6.0.6324912.1, 6.0.247066875.1, 9.1.143496441000000.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |