Normalized defining polynomial
\( x^{18} + 22 x^{16} - 8 x^{15} + 193 x^{14} - 138 x^{13} + 1085 x^{12} - 921 x^{11} + 4781 x^{10} - 3596 x^{9} + 13950 x^{8} - 12017 x^{7} + 36528 x^{6} - 25667 x^{5} + 61742 x^{4} - 59237 x^{3} + 44674 x^{2} - 56832 x + 39944 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-615992567705547976896144751=-\,13^{12}\cdot 31^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{15} - \frac{1}{8} a^{14} + \frac{1}{40} a^{13} - \frac{1}{10} a^{12} - \frac{1}{5} a^{11} - \frac{1}{8} a^{10} + \frac{1}{20} a^{9} - \frac{3}{40} a^{8} + \frac{19}{40} a^{7} + \frac{3}{8} a^{6} - \frac{2}{5} a^{5} - \frac{3}{20} a^{4} + \frac{9}{40} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{7634680} a^{16} + \frac{1959}{763468} a^{15} + \frac{92859}{1908670} a^{14} - \frac{556599}{7634680} a^{13} - \frac{608359}{3817340} a^{12} - \frac{86141}{1526936} a^{11} - \frac{1150553}{7634680} a^{10} - \frac{1079723}{7634680} a^{9} + \frac{512467}{3817340} a^{8} + \frac{8331}{24628} a^{7} + \frac{3090719}{7634680} a^{6} + \frac{460041}{1908670} a^{5} + \frac{1015419}{7634680} a^{4} - \frac{33}{1048} a^{3} - \frac{1218653}{3817340} a^{2} + \frac{428163}{954335} a + \frac{8203}{190867}$, $\frac{1}{28747934229673362918475527202520} a^{17} - \frac{1116333544592261542430191}{28747934229673362918475527202520} a^{16} + \frac{164152138180380498869763722077}{28747934229673362918475527202520} a^{15} - \frac{85901026173766517767429735051}{2874793422967336291847552720252} a^{14} + \frac{1531938595831547991164312468871}{14373967114836681459237763601260} a^{13} - \frac{4404133523964198093467965058411}{28747934229673362918475527202520} a^{12} - \frac{3037152477822038572021757438623}{14373967114836681459237763601260} a^{11} - \frac{849328724647926127437203802367}{5749586845934672583695105440504} a^{10} - \frac{5989534888970169649233576697571}{28747934229673362918475527202520} a^{9} + \frac{3175495208576986243166418530243}{28747934229673362918475527202520} a^{8} - \frac{4447539118967822590767980095241}{14373967114836681459237763601260} a^{7} + \frac{148684375682409473082575849010}{718698355741834072961888180063} a^{6} + \frac{66205221527979219564698035969}{927352717086237513499210554920} a^{5} - \frac{350634878873281381456675757597}{718698355741834072961888180063} a^{4} - \frac{793395682838380852230298481263}{7186983557418340729618881800630} a^{3} + \frac{345313030978813471802246196959}{718698355741834072961888180063} a^{2} + \frac{537427688416883522078765363573}{1437396711483668145923776360126} a - \frac{345263906356451795132927714}{719705944063523005169124955}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138932.419034 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.1.31.1 x3, 3.3.169.1, 6.0.29791.1, 6.0.850860751.1, 6.0.850860751.2 x2, 9.3.143795466919.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |