Normalized defining polynomial
\( x^{18} - 3 x^{17} + 27 x^{16} - 26 x^{15} + 321 x^{14} - 123 x^{13} + 2645 x^{12} + 1020 x^{11} + 13374 x^{10} + 10200 x^{9} + 51657 x^{8} + 49845 x^{7} + 115629 x^{6} + 89958 x^{5} + 147603 x^{4} + 114065 x^{3} + 107682 x^{2} + 43053 x + 16129 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6149740048489888978791661947=-\,3^{27}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{18} a^{15} + \frac{1}{18} a^{14} - \frac{1}{18} a^{13} - \frac{1}{18} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{8} - \frac{2}{9} a^{7} + \frac{7}{18} a^{6} - \frac{7}{18} a^{5} + \frac{5}{18} a^{4} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2} + \frac{7}{18} a + \frac{5}{18}$, $\frac{1}{9756} a^{16} - \frac{121}{4878} a^{15} - \frac{85}{2439} a^{14} + \frac{295}{4878} a^{13} - \frac{115}{9756} a^{12} + \frac{12}{271} a^{11} + \frac{7}{813} a^{10} - \frac{181}{2439} a^{9} - \frac{511}{2439} a^{8} - \frac{272}{2439} a^{7} - \frac{109}{9756} a^{6} - \frac{383}{4878} a^{5} - \frac{665}{4878} a^{4} - \frac{377}{813} a^{3} + \frac{3793}{9756} a^{2} + \frac{835}{4878} a + \frac{341}{1084}$, $\frac{1}{250276017119298347544860142068652} a^{17} + \frac{1340230125195374753498582770}{62569004279824586886215035517163} a^{16} + \frac{117846303510966442414242729553}{125138008559649173772430071034326} a^{15} + \frac{4410268456454196529016298184915}{125138008559649173772430071034326} a^{14} - \frac{16988242377416074260747967852471}{250276017119298347544860142068652} a^{13} - \frac{1488666364492858348360556047384}{20856334759941528962071678505721} a^{12} + \frac{309593626210754699318975908205}{41712669519883057924143357011442} a^{11} - \frac{671735191306262442204248750290}{62569004279824586886215035517163} a^{10} + \frac{861632603689816227391544375555}{62569004279824586886215035517163} a^{9} + \frac{4060361019468340310229229472561}{125138008559649173772430071034326} a^{8} - \frac{79843131414314007761889214065505}{250276017119298347544860142068652} a^{7} - \frac{31093098695142568399744055147794}{62569004279824586886215035517163} a^{6} - \frac{57842859851013502844513612999597}{125138008559649173772430071034326} a^{5} + \frac{18000760470396080946651395062847}{41712669519883057924143357011442} a^{4} - \frac{34535763032593469083640682835997}{250276017119298347544860142068652} a^{3} - \frac{10476974939716064728606850097079}{62569004279824586886215035517163} a^{2} + \frac{10856767315980764349924504518237}{83425339039766115848286714022884} a + \frac{4213528873990388765392440099}{54741036115332097013311492141}$
Class group and class number
$C_{21}$, which has order $21$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{758768054739776381090673359}{6952111586647176320690559501907} a^{17} - \frac{125611447366805591397563008159}{250276017119298347544860142068652} a^{16} + \frac{462857105424897622237423891981}{125138008559649173772430071034326} a^{15} - \frac{1045530721312453668982515761077}{125138008559649173772430071034326} a^{14} + \frac{5718175934493584984915838914183}{125138008559649173772430071034326} a^{13} - \frac{19082291857887032483074071576377}{250276017119298347544860142068652} a^{12} + \frac{7741059207925116312918612550391}{20856334759941528962071678505721} a^{11} - \frac{7801678581249395502261862032727}{20856334759941528962071678505721} a^{10} + \frac{107962989190003089972760735535038}{62569004279824586886215035517163} a^{9} - \frac{116307763896491239562218270019335}{125138008559649173772430071034326} a^{8} + \frac{342398746232609220336321979531979}{62569004279824586886215035517163} a^{7} - \frac{219439461694358593390306640054561}{250276017119298347544860142068652} a^{6} + \frac{1201697634955042299250565480787215}{125138008559649173772430071034326} a^{5} - \frac{41126556922402326804045670812458}{62569004279824586886215035517163} a^{4} + \frac{385993330413364849460970183117751}{41712669519883057924143357011442} a^{3} + \frac{614224628392685649641973173847539}{250276017119298347544860142068652} a^{2} + \frac{464646232220153089381446134273675}{125138008559649173772430071034326} a - \frac{484897457648597737466328486097}{656892433383985164159737905692} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1105667.84512 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3$ (as 18T15):
| A solvable group of order 54 |
| The 22 conjugacy class representatives for $C_2\times He_3$ |
| Character table for $C_2\times He_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.9.15091989595281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $73$ | 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |