/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 3*x^17 - 2*x^16 + 12*x^15 + 11*x^14 - 55*x^13 + 101*x^11 - 8*x^10 - 107*x^9 - 8*x^8 + 101*x^7 - 55*x^5 + 11*x^4 + 12*x^3 - 2*x^2 - 3*x + 1, 18, 6, [0, 9], -6131323620948659515767, [3, 7, 11], [1, a, a^2, a^3, a^4, a^5, 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2*a - 1/2, 1/2*a^7 - 1/2, 1/2*a^8 - 1/2*a, 1/2*a^9 - 1/2*a^2, 1/2*a^10 - 1/2*a^3, 1/2*a^11 - 1/2*a^4, 1/8*a^12 - 1/8*a^10 - 1/8*a^8 - 1/4*a^7 - 1/8*a^6 + 1/4*a^5 - 1/8*a^4 - 1/2*a^3 + 3/8*a^2 - 3/8, 1/8*a^13 - 1/8*a^11 - 1/8*a^9 - 1/4*a^8 - 1/8*a^7 - 1/4*a^6 + 3/8*a^5 - 1/8*a^3 - 1/2*a^2 + 1/8*a - 1/2, 1/40*a^14 - 1/4*a^10 - 1/4*a^9 - 1/4*a^8 - 1/10*a^7 - 1/4*a^6 - 1/4*a^5 + 1/4*a^4 - 1/2*a^3 + 1/40, 1/40*a^15 - 1/4*a^11 - 1/4*a^10 - 1/4*a^9 - 1/10*a^8 - 1/4*a^7 - 1/4*a^6 + 1/4*a^5 - 1/2*a^4 + 1/40*a, 1/200*a^16 + 1/200*a^15 + 1/200*a^14 - 1/20*a^13 - 1/40*a^12 + 1/20*a^11 + 9/40*a^10 + 23/100*a^9 + 31/200*a^8 - 1/50*a^7 + 9/40*a^6 - 1/5*a^5 + 9/40*a^4 + 9/20*a^3 + 19/50*a^2 - 49/200*a - 37/100, 1/200*a^17 - 1/200*a^14 + 1/40*a^13 - 1/20*a^12 + 7/40*a^11 + 13/100*a^10 - 3/40*a^9 - 1/20*a^8 - 41/200*a^7 + 1/5*a^6 - 13/40*a^5 - 3/20*a^4 - 7/100*a^3 - 1/2*a^2 + 3/8*a + 59/200], 0, 1, [], 0, [ a^(17) - 3*a^(16) - 2*a^(15) + 12*a^(14) + 11*a^(13) - 55*a^(12) + 101*a^(10) - 8*a^(9) - 107*a^(8) - 8*a^(7) + 101*a^(6) - 55*a^(4) + 11*a^(3) + 12*a^(2) - 2*a - 3 , (53)/(40)*a^(17) - (287)/(100)*a^(16) - (1049)/(200)*a^(15) + (2391)/(200)*a^(14) + (1013)/(40)*a^(13) - (267)/(5)*a^(12) - (1943)/(40)*a^(11) + (2021)/(20)*a^(10) + (16271)/(200)*a^(9) - (4361)/(50)*a^(8) - (19739)/(200)*a^(7) + (641)/(10)*a^(6) + (2797)/(40)*a^(5) - (219)/(10)*a^(4) - (327)/(20)*a^(3) + (169)/(50)*a^(2) + (463)/(100)*a - (59)/(200) , (139)/(100)*a^(17) - (79)/(25)*a^(16) - (1077)/(200)*a^(15) + (541)/(40)*a^(14) + (1047)/(40)*a^(13) - (303)/(5)*a^(12) - (1973)/(40)*a^(11) + (5947)/(50)*a^(10) + (16733)/(200)*a^(9) - (5773)/(50)*a^(8) - (4361)/(40)*a^(7) + (1783)/(20)*a^(6) + (3317)/(40)*a^(5) - (743)/(20)*a^(4) - (4997)/(200)*a^(3) + (171)/(25)*a^(2) + (549)/(100)*a - (83)/(40) , (467)/(200)*a^(17) - (601)/(100)*a^(16) - (184)/(25)*a^(15) + (5061)/(200)*a^(14) + (733)/(20)*a^(13) - (2291)/(20)*a^(12) - (199)/(4)*a^(11) + (22251)/(100)*a^(10) + (3707)/(50)*a^(9) - (11663)/(50)*a^(8) - (11167)/(100)*a^(7) + (4089)/(20)*a^(6) + (327)/(4)*a^(5) - (439)/(4)*a^(4) - (3293)/(200)*a^(3) + (3099)/(100)*a^(2) + (207)/(50)*a - (1419)/(200) , (757)/(200)*a^(17) - (1779)/(200)*a^(16) - (2719)/(200)*a^(15) + (3707)/(100)*a^(14) + (267)/(4)*a^(13) - (667)/(4)*a^(12) - (2267)/(20)*a^(11) + (31751)/(100)*a^(10) + (9309)/(50)*a^(9) - (30017)/(100)*a^(8) - (24323)/(100)*a^(7) + (951)/(4)*a^(6) + (3473)/(20)*a^(5) - (2089)/(20)*a^(4) - (8183)/(200)*a^(3) + (4171)/(200)*a^(2) + (1981)/(200)*a - (127)/(25) , (299)/(100)*a^(17) - (351)/(50)*a^(16) - (1067)/(100)*a^(15) + (5823)/(200)*a^(14) + (2101)/(40)*a^(13) - (1313)/(10)*a^(12) - (3537)/(40)*a^(11) + (24909)/(100)*a^(10) + (29121)/(200)*a^(9) - (5923)/(25)*a^(8) - (37777)/(200)*a^(7) + (1927)/(10)*a^(6) + (5393)/(40)*a^(5) - (1717)/(20)*a^(4) - (6007)/(200)*a^(3) + (1049)/(50)*a^(2) + (1891)/(200)*a - (997)/(200) , (513)/(200)*a^(17) - (1373)/(200)*a^(16) - (1593)/(200)*a^(15) + (1501)/(50)*a^(14) + (1559)/(40)*a^(13) - (5393)/(40)*a^(12) - (407)/(8)*a^(11) + (54653)/(200)*a^(10) + (13647)/(200)*a^(9) - (59913)/(200)*a^(8) - (25001)/(200)*a^(7) + (10667)/(40)*a^(6) + (831)/(8)*a^(5) - (1179)/(8)*a^(4) - (719)/(25)*a^(3) + (844)/(25)*a^(2) + (433)/(50)*a - (1141)/(200) , (269)/(200)*a^(17) - (519)/(200)*a^(16) - (1179)/(200)*a^(15) + (2067)/(200)*a^(14) + (144)/(5)*a^(13) - (927)/(20)*a^(12) - 62*a^(11) + (4091)/(50)*a^(10) + (2827)/(25)*a^(9) - (2791)/(50)*a^(8) - (6337)/(50)*a^(7) + (112)/(5)*a^(6) + (343)/(4)*a^(5) + 11*a^(4) - (4301)/(200)*a^(3) - (1169)/(200)*a^(2) + (471)/(200)*a + (157)/(200) ], 27994.834823771416, [[x^2 - x + 2, 1], [x^3 - x^2 - 2*x + 1, 1], [x^3 - x^2 + 3, 1], [x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1], [x^6 - x^5 + 3*x^4 + x^3 + 3*x^2 - x + 1, 1], [x^9 - x^8 + 5*x^7 - x^6 - x^5 + 27*x^4 - x^3 - 30*x^2 + 8, 1]]]