Normalized defining polynomial
\( x^{18} + 5x^{16} + 12x^{14} + 29x^{12} + 55x^{10} + 57x^{8} + 39x^{6} + 22x^{4} + 8x^{2} + 1 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-6107453226347659264\)
\(\medspace = -\,2^{18}\cdot 13^{12}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(11.06\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(2\), \(13\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Gal(K/\Q) }$: | $18$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{13}+\frac{1}{4}a^{11}-\frac{1}{2}a^{10}+\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{14}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{188}a^{16}-\frac{9}{188}a^{14}-\frac{3}{188}a^{12}-\frac{1}{2}a^{11}-\frac{23}{188}a^{10}-\frac{1}{2}a^{9}-\frac{93}{188}a^{8}-\frac{1}{2}a^{7}-\frac{51}{188}a^{6}+\frac{1}{188}a^{4}+\frac{2}{47}a^{2}-\frac{1}{2}a-\frac{5}{94}$, $\frac{1}{188}a^{17}-\frac{9}{188}a^{15}-\frac{3}{188}a^{13}-\frac{23}{188}a^{11}-\frac{93}{188}a^{9}-\frac{51}{188}a^{7}-\frac{1}{2}a^{6}+\frac{1}{188}a^{5}-\frac{1}{2}a^{4}+\frac{2}{47}a^{3}-\frac{5}{94}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{74}{47} a^{17} - \frac{689}{94} a^{15} - \frac{765}{47} a^{13} - \frac{1870}{47} a^{11} - \frac{3411}{47} a^{9} - \frac{2994}{47} a^{7} - \frac{1813}{47} a^{5} - \frac{1062}{47} a^{3} - \frac{541}{94} a \)
(order $4$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{9}{94}a^{17}+\frac{56}{47}a^{16}+\frac{30}{47}a^{15}+\frac{945}{188}a^{14}+\frac{161}{94}a^{13}+\frac{490}{47}a^{12}+\frac{357}{94}a^{11}+\frac{1250}{47}a^{10}+\frac{761}{94}a^{9}+\frac{2124}{47}a^{8}+\frac{452}{47}a^{7}+\frac{3171}{94}a^{6}+\frac{263}{47}a^{5}+\frac{2039}{94}a^{4}+\frac{177}{47}a^{3}+\frac{495}{47}a^{2}+\frac{96}{47}a+\frac{251}{188}$, $\frac{199}{188}a^{17}-\frac{13}{47}a^{16}+\frac{841}{188}a^{15}-\frac{95}{94}a^{14}+\frac{853}{94}a^{13}-\frac{157}{94}a^{12}+\frac{2153}{94}a^{11}-\frac{218}{47}a^{10}+\frac{1824}{47}a^{9}-\frac{637}{94}a^{8}+\frac{2469}{94}a^{7}-\frac{42}{47}a^{6}+\frac{649}{47}a^{5}-\frac{13}{47}a^{4}+\frac{1263}{188}a^{3}-\frac{10}{47}a^{2}+\frac{125}{188}a+\frac{36}{47}$, $\frac{199}{188}a^{17}+\frac{13}{47}a^{16}+\frac{841}{188}a^{15}+\frac{95}{94}a^{14}+\frac{853}{94}a^{13}+\frac{157}{94}a^{12}+\frac{2153}{94}a^{11}+\frac{218}{47}a^{10}+\frac{1824}{47}a^{9}+\frac{637}{94}a^{8}+\frac{2469}{94}a^{7}+\frac{42}{47}a^{6}+\frac{649}{47}a^{5}+\frac{13}{47}a^{4}+\frac{1263}{188}a^{3}+\frac{10}{47}a^{2}+\frac{125}{188}a-\frac{36}{47}$, $\frac{9}{94}a^{17}-\frac{56}{47}a^{16}+\frac{30}{47}a^{15}-\frac{945}{188}a^{14}+\frac{161}{94}a^{13}-\frac{490}{47}a^{12}+\frac{357}{94}a^{11}-\frac{1250}{47}a^{10}+\frac{761}{94}a^{9}-\frac{2124}{47}a^{8}+\frac{452}{47}a^{7}-\frac{3171}{94}a^{6}+\frac{263}{47}a^{5}-\frac{2039}{94}a^{4}+\frac{177}{47}a^{3}-\frac{495}{47}a^{2}+\frac{96}{47}a-\frac{251}{188}$, $\frac{12}{47}a^{16}+\frac{33}{47}a^{14}+\frac{69}{94}a^{12}+\frac{247}{94}a^{10}+\frac{165}{94}a^{8}-\frac{519}{94}a^{6}-\frac{399}{94}a^{4}-\frac{325}{94}a^{2}-\frac{193}{94}$, $\frac{1}{47}a^{17}+\frac{29}{94}a^{15}+\frac{44}{47}a^{13}+\frac{71}{47}a^{11}+\frac{189}{47}a^{9}+\frac{231}{47}a^{7}-\frac{46}{47}a^{5}+\frac{8}{47}a^{3}+\frac{121}{94}a$, $\frac{175}{94}a^{16}+\frac{775}{94}a^{14}+\frac{1637}{94}a^{12}+\frac{4059}{94}a^{10}+\frac{7131}{94}a^{8}+\frac{5457}{94}a^{6}+\frac{2995}{94}a^{4}+\frac{794}{47}a^{2}+\frac{112}{47}$, $\frac{247}{188}a^{17}-\frac{79}{188}a^{16}+\frac{255}{47}a^{15}-\frac{185}{94}a^{14}+\frac{2079}{188}a^{13}-\frac{211}{47}a^{12}+\frac{5411}{188}a^{11}-\frac{521}{47}a^{10}+\frac{9083}{188}a^{9}-\frac{948}{47}a^{8}+\frac{6579}{188}a^{7}-\frac{1769}{94}a^{6}+\frac{4853}{188}a^{5}-\frac{1191}{94}a^{4}+\frac{1317}{94}a^{3}-\frac{1055}{188}a^{2}+\frac{303}{188}a-\frac{14}{47}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 132.794513852 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 132.794513852 \cdot 1}{4\cdot\sqrt{6107453226347659264}}\cr\approx \mathstrut & 0.205025973389 \end{aligned}\]
Galois group
$C_3\times S_3$ (as 18T3):
A solvable group of order 18 |
The 9 conjugacy class representatives for $S_3 \times C_3$ |
Character table for $S_3 \times C_3$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 3.1.676.1 x3, 3.3.169.1, 6.0.1827904.2, 6.0.10816.1 x2, 6.0.1827904.1, 9.3.308915776.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 sibling: | 6.0.10816.1 |
Degree 9 sibling: | 9.3.308915776.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{3}$ | ${\href{/padicField/5.3.0.1}{3} }^{6}$ | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{6}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{3}$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{9}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.3.0.1}{3} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.3.0.1}{3} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(13\)
| 13.9.6.1 | $x^{9} + 6 x^{7} + 72 x^{6} + 12 x^{5} + 54 x^{4} - 2125 x^{3} + 288 x^{2} - 2160 x + 13928$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
13.9.6.1 | $x^{9} + 6 x^{7} + 72 x^{6} + 12 x^{5} + 54 x^{4} - 2125 x^{3} + 288 x^{2} - 2160 x + 13928$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |