Normalized defining polynomial
\( x^{18} + 18 x^{16} - 24 x^{15} + 162 x^{14} - 288 x^{13} + 1068 x^{12} - 1872 x^{11} + 4473 x^{10} - 7616 x^{9} + 13050 x^{8} - 18360 x^{7} + 23988 x^{6} - 26784 x^{5} + 24408 x^{4} - 16992 x^{3} + 8352 x^{2} - 2304 x + 256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-60436082803655481715851264=-\,2^{27}\cdot 3^{37}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{13} + \frac{1}{32} a^{11} - \frac{1}{32} a^{9} + \frac{3}{32} a^{7} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{10} + \frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{1088} a^{15} - \frac{1}{1088} a^{14} + \frac{11}{1088} a^{13} + \frac{31}{1088} a^{12} + \frac{53}{1088} a^{11} - \frac{19}{1088} a^{10} - \frac{55}{1088} a^{9} - \frac{19}{1088} a^{8} + \frac{45}{544} a^{7} - \frac{1}{16} a^{6} - \frac{15}{272} a^{5} + \frac{11}{272} a^{4} - \frac{41}{136} a^{3} + \frac{7}{17} a^{2} - \frac{8}{17} a - \frac{3}{17}$, $\frac{1}{2176} a^{16} - \frac{3}{272} a^{14} + \frac{1}{272} a^{13} - \frac{9}{1088} a^{12} + \frac{7}{544} a^{10} + \frac{3}{68} a^{9} + \frac{37}{2176} a^{8} - \frac{5}{136} a^{7} - \frac{49}{544} a^{6} + \frac{15}{272} a^{5} + \frac{31}{544} a^{4} + \frac{67}{136} a^{3} - \frac{21}{136} a^{2} - \frac{11}{34} a + \frac{7}{17}$, $\frac{1}{10569569224448} a^{17} - \frac{758859609}{5284784612224} a^{16} + \frac{514208499}{2642392306112} a^{15} - \frac{14106836161}{1321196153056} a^{14} + \frac{21416486097}{5284784612224} a^{13} - \frac{5081856671}{203260946624} a^{12} - \frac{23642997}{685623328} a^{11} + \frac{81277697559}{1321196153056} a^{10} - \frac{439851939999}{10569569224448} a^{9} - \frac{88589790557}{5284784612224} a^{8} - \frac{193988823677}{2642392306112} a^{7} + \frac{12464565213}{660598076528} a^{6} - \frac{33790372685}{155434841536} a^{5} - \frac{221685412901}{1321196153056} a^{4} + \frac{113746523867}{660598076528} a^{3} - \frac{1780590869}{25407618328} a^{2} + \frac{11987875502}{41287379783} a - \frac{16729895994}{41287379783}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46631737.4813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.1.216.1 x3, 6.0.1119744.1, 9.1.1586874322944.5 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||