Normalized defining polynomial
\( x^{18} - 7 x^{17} + 94 x^{16} - 490 x^{15} + 3915 x^{14} - 16343 x^{13} + 97606 x^{12} - 334121 x^{11} + 1618870 x^{10} - 4550063 x^{9} + 18591955 x^{8} - 42122997 x^{7} + 148181983 x^{6} - 258570274 x^{5} + 792133944 x^{4} - 962623287 x^{3} + 2585263350 x^{2} - 1667313198 x + 3945435121 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-60205903544285399375543269800867879=-\,3^{9}\cdot 13^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(741=3\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{741}(1,·)$, $\chi_{741}(194,·)$, $\chi_{741}(196,·)$, $\chi_{741}(389,·)$, $\chi_{741}(391,·)$, $\chi_{741}(586,·)$, $\chi_{741}(77,·)$, $\chi_{741}(272,·)$, $\chi_{741}(467,·)$, $\chi_{741}(662,·)$, $\chi_{741}(157,·)$, $\chi_{741}(233,·)$, $\chi_{741}(235,·)$, $\chi_{741}(625,·)$, $\chi_{741}(118,·)$, $\chi_{741}(311,·)$, $\chi_{741}(313,·)$, $\chi_{741}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{65139102827137114919668136370872913198024860018272269503803} a^{17} - \frac{14334585919848815946250427751163688237369402316875701817703}{65139102827137114919668136370872913198024860018272269503803} a^{16} - \frac{12029236950349289171039751219160566968899015375883384607820}{65139102827137114919668136370872913198024860018272269503803} a^{15} + \frac{16410518047786392340339823632708432877360326853230836002818}{65139102827137114919668136370872913198024860018272269503803} a^{14} - \frac{9860724844309768424715546152107559778489480223280271079150}{65139102827137114919668136370872913198024860018272269503803} a^{13} + \frac{6217551907800823596946989892524879364935991033878214593328}{65139102827137114919668136370872913198024860018272269503803} a^{12} - \frac{18717947527497194329808057400474890643607145572510067295172}{65139102827137114919668136370872913198024860018272269503803} a^{11} + \frac{14115141449879530269694384300680630921188410047191060909915}{65139102827137114919668136370872913198024860018272269503803} a^{10} - \frac{24102360655394613551382625322455791863093712112810318926957}{65139102827137114919668136370872913198024860018272269503803} a^{9} + \frac{20225593285442986762686972216460951977147187106284381330437}{65139102827137114919668136370872913198024860018272269503803} a^{8} + \frac{22851528691079563690694464526315896507349999593800618111933}{65139102827137114919668136370872913198024860018272269503803} a^{7} + \frac{3499177403145066409154739713361436591569727004940874912717}{65139102827137114919668136370872913198024860018272269503803} a^{6} + \frac{17099633599736936616907468564152821085473809722309944992606}{65139102827137114919668136370872913198024860018272269503803} a^{5} + \frac{24071023384238707204551328436115062244468487611794648700740}{65139102827137114919668136370872913198024860018272269503803} a^{4} + \frac{7632552736158727679783124157945879361511547325900026511550}{65139102827137114919668136370872913198024860018272269503803} a^{3} + \frac{16322245127347174639341344370327779337324761677217006540965}{65139102827137114919668136370872913198024860018272269503803} a^{2} - \frac{26622651015271455038360860005326918991715743359770774930346}{65139102827137114919668136370872913198024860018272269503803} a - \frac{4036486791657949813109130411971660922624433840907318529333}{65139102827137114919668136370872913198024860018272269503803}$
Class group and class number
$C_{143164}$, which has order $143164$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22305.8950792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.3.361.1, 6.0.7730511399.2, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||