Properties

Label 18.0.60058044833...9184.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 3^{9}\cdot 7^{9}\cdot 19^{16}$
Root discriminant $125.55$
Ramified primes $2, 3, 7, 19$
Class number $9093312$ (GRH)
Class group $[2, 2, 4, 568332]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1696770051481, -135741604120, 573297458501, -41302878778, 89361791435, -5731976716, 8430968114, -473795224, 530650253, -25526162, 23121289, -919080, 698247, -21646, 14120, -306, 174, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 174*x^16 - 306*x^15 + 14120*x^14 - 21646*x^13 + 698247*x^12 - 919080*x^11 + 23121289*x^10 - 25526162*x^9 + 530650253*x^8 - 473795224*x^7 + 8430968114*x^6 - 5731976716*x^5 + 89361791435*x^4 - 41302878778*x^3 + 573297458501*x^2 - 135741604120*x + 1696770051481)
 
gp: K = bnfinit(x^18 - 2*x^17 + 174*x^16 - 306*x^15 + 14120*x^14 - 21646*x^13 + 698247*x^12 - 919080*x^11 + 23121289*x^10 - 25526162*x^9 + 530650253*x^8 - 473795224*x^7 + 8430968114*x^6 - 5731976716*x^5 + 89361791435*x^4 - 41302878778*x^3 + 573297458501*x^2 - 135741604120*x + 1696770051481, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 174 x^{16} - 306 x^{15} + 14120 x^{14} - 21646 x^{13} + 698247 x^{12} - 919080 x^{11} + 23121289 x^{10} - 25526162 x^{9} + 530650253 x^{8} - 473795224 x^{7} + 8430968114 x^{6} - 5731976716 x^{5} + 89361791435 x^{4} - 41302878778 x^{3} + 573297458501 x^{2} - 135741604120 x + 1696770051481 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-60058044833301692798474988224160989184=-\,2^{18}\cdot 3^{9}\cdot 7^{9}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $125.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1596=2^{2}\cdot 3\cdot 7\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{1596}(1,·)$, $\chi_{1596}(841,·)$, $\chi_{1596}(587,·)$, $\chi_{1596}(83,·)$, $\chi_{1596}(1429,·)$, $\chi_{1596}(1175,·)$, $\chi_{1596}(923,·)$, $\chi_{1596}(671,·)$, $\chi_{1596}(419,·)$, $\chi_{1596}(169,·)$, $\chi_{1596}(1259,·)$, $\chi_{1596}(1261,·)$, $\chi_{1596}(757,·)$, $\chi_{1596}(503,·)$, $\chi_{1596}(505,·)$, $\chi_{1596}(251,·)$, $\chi_{1596}(253,·)$, $\chi_{1596}(85,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{17} + \frac{3680691950561589480264282898894991124753228683239080607733039260205611}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{16} - \frac{2433920577167324324265470432403901441399986449024383499776748948050488}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{15} + \frac{1656321242593602150670253213398691872597813605087704179587869371567217}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{14} - \frac{4140848308435769116115706782160679897047885583152810099043676318475738}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{13} - \frac{3419692888318670089849639393263394139971950547063646847797223474099150}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{12} + \frac{147267137973964197242832405498824143556155009992052479899463581252349}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{11} - \frac{2334383060024590495733255528186414097684749538198202320285087247492289}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{10} + \frac{2255286830937101487579571124566394096434847201304772350383554919156614}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{9} - \frac{4443085875463562451723434930210965807068039817326243639047864762780496}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{8} + \frac{566263145832087816880392627762388704491679752885968774220907167202488}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{7} - \frac{1414756626724472337177776721526079831276356816834553625599164138727268}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{6} + \frac{4372483252588004389532604846701489775267220150394167736965177060880875}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{5} - \frac{4626779535061220455828193367207913948672365583220654674265879875739769}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{4} + \frac{2059230495700352455516758482511556323643118642065177982027764483748487}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{3} - \frac{1724982198208093564427240138726323121235017089813450144135239734228694}{10548332041476250058015115506975484465401382180857877844857819408959833} a^{2} - \frac{2401710833197593667415252816259222856128862197782418757096068692895908}{10548332041476250058015115506975484465401382180857877844857819408959833} a - \frac{2833795865140859763633911808798399504111252744885324692602617004633162}{10548332041476250058015115506975484465401382180857877844857819408959833}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{568332}$, which has order $9093312$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.895079162343 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-21}) \), 3.3.361.1, 6.0.77241777984.6, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ $18$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ $18$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
$7$7.6.3.1$x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7.6.3.1$x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7.6.3.1$x^{6} - 14 x^{4} + 49 x^{2} - 1372$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$19$19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$