Normalized defining polynomial
\( x^{18} + 32 x^{16} + 378 x^{14} + 2158 x^{12} + 6721 x^{10} + 11626 x^{8} + 9513 x^{6} + 1304 x^{4} + 784 x^{2} + 576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6003634483099142379672961024=-\,2^{18}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{6} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{7} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{10} + \frac{7}{18} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{5}{36} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{15} + \frac{1}{36} a^{11} + \frac{5}{72} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{17}{72} a^{3} - \frac{1}{2} a$, $\frac{1}{181235756016} a^{16} + \frac{575320267}{45308939004} a^{14} - \frac{814155617}{90617878008} a^{12} + \frac{1004765599}{90617878008} a^{10} + \frac{635249057}{181235756016} a^{8} + \frac{39803667121}{90617878008} a^{6} - \frac{80975653427}{181235756016} a^{4} - \frac{1}{2} a^{3} - \frac{5666524525}{22654469502} a^{2} + \frac{357880945}{1258581639}$, $\frac{1}{362471512032} a^{17} + \frac{575320267}{90617878008} a^{15} + \frac{6737334217}{181235756016} a^{13} + \frac{1004765599}{181235756016} a^{11} + \frac{635249057}{362471512032} a^{9} + \frac{17149197619}{181235756016} a^{7} - \frac{1}{2} a^{6} - \frac{96078633095}{362471512032} a^{5} + \frac{45303124705}{90617878008} a^{3} - \frac{1}{2} a^{2} + \frac{357880945}{2517163278} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{23141}{38758716} a^{17} + \frac{1455973}{77517432} a^{15} + \frac{4162307}{19379358} a^{13} + \frac{44559805}{38758716} a^{11} + \frac{30486490}{9689679} a^{9} + \frac{312528041}{77517432} a^{7} + \frac{4420007}{9689679} a^{5} - \frac{276404783}{77517432} a^{3} + \frac{151223}{2153262} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12079603.9433 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.21316.1 x3, 3.3.5329.1, 6.0.1817487424.2, 6.0.341056.1 x2, 6.0.1817487424.1, 9.3.9685390482496.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.341056.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $73$ | 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |