Properties

Label 18.0.59753368232...4496.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{19}\cdot 3^{24}\cdot 7^{9}$
Root discriminant $23.79$
Ramified primes $2, 3, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3\times S_3\wr C_2$ (as 18T150)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14, 42, 144, 207, 330, 222, 171, 9, -99, -47, -54, -27, 63, 24, -18, -3, 6, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 + 6*x^16 - 3*x^15 - 18*x^14 + 24*x^13 + 63*x^12 - 27*x^11 - 54*x^10 - 47*x^9 - 99*x^8 + 9*x^7 + 171*x^6 + 222*x^5 + 330*x^4 + 207*x^3 + 144*x^2 + 42*x + 14)
 
gp: K = bnfinit(x^18 - 3*x^17 + 6*x^16 - 3*x^15 - 18*x^14 + 24*x^13 + 63*x^12 - 27*x^11 - 54*x^10 - 47*x^9 - 99*x^8 + 9*x^7 + 171*x^6 + 222*x^5 + 330*x^4 + 207*x^3 + 144*x^2 + 42*x + 14, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} + 6 x^{16} - 3 x^{15} - 18 x^{14} + 24 x^{13} + 63 x^{12} - 27 x^{11} - 54 x^{10} - 47 x^{9} - 99 x^{8} + 9 x^{7} + 171 x^{6} + 222 x^{5} + 330 x^{4} + 207 x^{3} + 144 x^{2} + 42 x + 14 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-5975336823211392744554496=-\,2^{19}\cdot 3^{24}\cdot 7^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{91} a^{16} - \frac{4}{13} a^{15} - \frac{2}{7} a^{14} + \frac{31}{91} a^{13} + \frac{3}{7} a^{12} + \frac{17}{91} a^{11} + \frac{4}{13} a^{10} + \frac{24}{91} a^{9} - \frac{38}{91} a^{8} - \frac{12}{91} a^{7} - \frac{11}{91} a^{6} - \frac{32}{91} a^{5} + \frac{2}{13} a^{4} + \frac{1}{91} a^{2} - \frac{6}{13}$, $\frac{1}{814097008102224847} a^{17} + \frac{301520070110557}{814097008102224847} a^{16} + \frac{368028517250586411}{814097008102224847} a^{15} - \frac{264104087345010986}{814097008102224847} a^{14} + \frac{173109082707190947}{814097008102224847} a^{13} - \frac{316032061369248142}{814097008102224847} a^{12} - \frac{99751611408013273}{814097008102224847} a^{11} + \frac{1044890250042566}{62622846777094219} a^{10} - \frac{9624854034356424}{74008818918384077} a^{9} + \frac{100449020780022527}{814097008102224847} a^{8} + \frac{312273026624449153}{814097008102224847} a^{7} + \frac{142355883243875141}{814097008102224847} a^{6} + \frac{162425269563222076}{814097008102224847} a^{5} + \frac{1010846597119283}{116299572586032121} a^{4} + \frac{28426663601589072}{814097008102224847} a^{3} - \frac{23642568047281203}{74008818918384077} a^{2} + \frac{34492119792211023}{116299572586032121} a - \frac{1138972721609443}{116299572586032121}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 472763.797321 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times S_3\wr C_2$ (as 18T150):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 432
The 27 conjugacy class representatives for $S_3\times S_3\wr C_2$
Character table for $S_3\times S_3\wr C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), 3.3.756.1, 6.0.4000752.1, 6.0.2000376.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.11.1$x^{6} + 14$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
3Data not computed
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$