Normalized defining polynomial
\( x^{18} - 2 x^{17} + 69 x^{16} - 270 x^{15} + 2116 x^{14} - 11216 x^{13} + 52049 x^{12} - 220932 x^{11} + 978299 x^{10} - 2750554 x^{9} + 9953429 x^{8} - 22885542 x^{7} + 57594463 x^{6} - 121071826 x^{5} + 205773548 x^{4} - 351569070 x^{3} + 444155462 x^{2} - 445836796 x + 437249189 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-595382929470791769653248000000000000=-\,2^{33}\cdot 5^{12}\cdot 7^{12}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{17} - \frac{1616125625911953466252940232163023994860734167490986455625347637618761675}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{16} - \frac{1190118428621509450916764925424890561677300604588685311804614346966882285}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{15} - \frac{153499853090155583723000893129422808611231214679113754194276666275208444}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{14} - \frac{1657896349068302617999310365224658925906645605743061764918572876989768845}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{13} - \frac{1536633581911447983226025792542883924553728231935741424384865949555312787}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{12} + \frac{256578770304203214358314508703240166200858385414496116743546953010983278}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{11} + \frac{928321071153008360974880179781247215368593673458694868074566500959857195}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{10} + \frac{1388381830301581503891671684224622709101568388009036251531945270725643407}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{9} + \frac{283058945183209413905473934404417001352899453104736674853463118522304231}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{8} - \frac{354090980933784605247274113348347770497620071933638779819980607600110}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{7} - \frac{2068074464280591875200105670480490782477877161067419195401812087860309265}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{6} + \frac{2031745279415620791450870663817744982422431697639420359358474416713457416}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{5} + \frac{1453469168084110765527849448729603657762116820442642580031966502600924581}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{4} + \frac{252404181871981180310035680092985827629016593324566995046568306372864519}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{3} - \frac{1782048036747508108598080936604202535648301024820530307005985419286532389}{4909148996332359334928418889193279734126766849017753742643631356067473571} a^{2} - \frac{2227632983349543871158126089040269247504817312826325763965300042409151878}{4909148996332359334928418889193279734126766849017753742643631356067473571} a - \frac{1487878437784670760965389441899354531257169181204960453692692542585966862}{4909148996332359334928418889193279734126766849017753742643631356067473571}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{12364}$, which has order $98912$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252178.434124 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.9800.1, 9.9.941192000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ |
| 2.12.24.244 | $x^{12} - 8 x^{11} + 4 x^{10} - 8 x^{9} - 14 x^{8} + 8 x^{7} + 8 x^{5} + 16 x^{3} - 8 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $[2, 2, 3]^{6}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |