Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 140 x^{15} + 294 x^{14} - 426 x^{13} + 498 x^{12} - 792 x^{11} + 1791 x^{10} - 3423 x^{9} + 4887 x^{8} - 5184 x^{7} + 4514 x^{6} - 5658 x^{5} + 9858 x^{4} - 11200 x^{3} + 6153 x^{2} - 1209 x + 169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-593038347905528851673088=-\,2^{12}\cdot 3^{21}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{6} + \frac{1}{6} a^{3} + \frac{1}{6}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{4} + \frac{1}{6} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{8} + \frac{1}{6} a^{5} + \frac{1}{6} a^{2}$, $\frac{1}{156} a^{12} + \frac{5}{78} a^{11} + \frac{3}{52} a^{10} + \frac{1}{13} a^{9} - \frac{5}{78} a^{8} + \frac{5}{26} a^{7} + \frac{9}{52} a^{6} + \frac{5}{78} a^{5} - \frac{5}{26} a^{4} - \frac{10}{39} a^{3} - \frac{23}{156} a^{2} + \frac{5}{26} a - \frac{5}{12}$, $\frac{1}{156} a^{13} - \frac{1}{12} a^{11} - \frac{1}{6} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a^{2} - \frac{53}{156} a$, $\frac{1}{156} a^{14} - \frac{1}{12} a^{10} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} - \frac{1}{4} a^{6} - \frac{1}{3} a^{5} - \frac{1}{12} a^{4} + \frac{16}{39} a^{2} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{468} a^{15} + \frac{1}{468} a^{14} - \frac{1}{468} a^{12} - \frac{23}{468} a^{11} - \frac{11}{234} a^{10} - \frac{25}{468} a^{9} + \frac{23}{468} a^{8} - \frac{17}{468} a^{7} + \frac{5}{26} a^{6} + \frac{9}{52} a^{5} - \frac{139}{468} a^{4} + \frac{5}{18} a^{3} - \frac{121}{468} a^{2} + \frac{35}{468} a + \frac{5}{18}$, $\frac{1}{468} a^{16} - \frac{1}{468} a^{14} - \frac{1}{468} a^{13} - \frac{1}{468} a^{12} - \frac{23}{468} a^{11} + \frac{5}{78} a^{10} - \frac{1}{39} a^{9} - \frac{4}{117} a^{8} - \frac{43}{468} a^{7} - \frac{11}{78} a^{6} + \frac{56}{117} a^{5} - \frac{49}{468} a^{4} + \frac{1}{468} a^{3} - \frac{31}{156} a^{2} + \frac{101}{468} a + \frac{5}{36}$, $\frac{1}{503657647404444} a^{17} - \frac{51864876737}{83942941234074} a^{16} - \frac{105125338103}{251828823702222} a^{15} - \frac{156440431519}{125914411851111} a^{14} + \frac{293203809767}{503657647404444} a^{13} + \frac{1568872944673}{503657647404444} a^{12} + \frac{4041827535765}{55961960822716} a^{11} + \frac{2759241259497}{55961960822716} a^{10} - \frac{7303808137309}{503657647404444} a^{9} + \frac{4237690389965}{125914411851111} a^{8} + \frac{11674571667527}{167885882468148} a^{7} - \frac{65935143995869}{503657647404444} a^{6} - \frac{4910566921159}{125914411851111} a^{5} - \frac{14142041403967}{251828823702222} a^{4} - \frac{6604169349989}{167885882468148} a^{3} - \frac{94718679509359}{503657647404444} a^{2} + \frac{90970548699541}{251828823702222} a + \frac{3963939922063}{12914298651396}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{46125936002}{41971470617037} a^{17} - \frac{274930706137}{41971470617037} a^{16} + \frac{960672549560}{41971470617037} a^{15} - \frac{1395471863480}{41971470617037} a^{14} - \frac{229311004900}{41971470617037} a^{13} + \frac{4897242058892}{41971470617037} a^{12} - \frac{5863926921544}{41971470617037} a^{11} - \frac{4731915303496}{41971470617037} a^{10} + \frac{12033402039710}{41971470617037} a^{9} + \frac{10056569093210}{41971470617037} a^{8} - \frac{50488038827560}{41971470617037} a^{7} + \frac{97088338790288}{41971470617037} a^{6} - \frac{27320354129460}{13990490205679} a^{5} - \frac{20101946712544}{41971470617037} a^{4} - \frac{33009084563608}{41971470617037} a^{3} + \frac{99087917632720}{13990490205679} a^{2} - \frac{262950778875830}{41971470617037} a + \frac{4210839445855}{3228574662849} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51834.4889774 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.5292.1 x3, \(\Q(\zeta_{7})^+\), 6.0.84015792.1, 6.0.1714608.2 x2, 6.0.64827.1, 9.3.148203857088.5 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1714608.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |