Normalized defining polynomial
\( x^{18} - 3 x^{17} - 18 x^{16} + 47 x^{15} + 135 x^{14} - 273 x^{13} - 435 x^{12} + 858 x^{11} + 651 x^{10} - 1545 x^{9} - 168 x^{8} + 1170 x^{7} - 106 x^{6} - 441 x^{5} + 60 x^{4} + 82 x^{3} - 9 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-593038347905528851673088=-\,2^{12}\cdot 3^{21}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{96559} a^{16} - \frac{14237}{96559} a^{15} - \frac{46094}{96559} a^{14} + \frac{26141}{96559} a^{13} + \frac{20754}{96559} a^{12} + \frac{27693}{96559} a^{11} + \frac{35968}{96559} a^{10} + \frac{14277}{96559} a^{9} - \frac{43512}{96559} a^{8} + \frac{21086}{96559} a^{7} - \frac{9786}{96559} a^{6} - \frac{28234}{96559} a^{5} - \frac{14006}{96559} a^{4} + \frac{30469}{96559} a^{3} + \frac{39299}{96559} a^{2} + \frac{7105}{96559} a + \frac{17382}{96559}$, $\frac{1}{18015688543} a^{17} + \frac{70406}{18015688543} a^{16} + \frac{5883384264}{18015688543} a^{15} - \frac{7912762279}{18015688543} a^{14} - \frac{6143252766}{18015688543} a^{13} - \frac{3739526324}{18015688543} a^{12} + \frac{1934837525}{18015688543} a^{11} + \frac{7390477732}{18015688543} a^{10} - \frac{7590534276}{18015688543} a^{9} - \frac{7138811740}{18015688543} a^{8} + \frac{2777881827}{18015688543} a^{7} - \frac{8272077942}{18015688543} a^{6} - \frac{1131853816}{18015688543} a^{5} + \frac{41109588}{18015688543} a^{4} - \frac{6657324279}{18015688543} a^{3} + \frac{3490832339}{18015688543} a^{2} + \frac{3769699805}{18015688543} a + \frac{353207965}{18015688543}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{54060390}{41606671} a^{17} + \frac{143683529}{41606671} a^{16} + \frac{1017355500}{41606671} a^{15} - \frac{2183233208}{41606671} a^{14} - \frac{7945058386}{41606671} a^{13} + \frac{11909319407}{41606671} a^{12} + \frac{26760496582}{41606671} a^{11} - \frac{36669377142}{41606671} a^{10} - \frac{44813447562}{41606671} a^{9} + \frac{66516087241}{41606671} a^{8} + \frac{26380576658}{41606671} a^{7} - \frac{50801859282}{41606671} a^{6} - \frac{6948261628}{41606671} a^{5} + \frac{18305872801}{41606671} a^{4} + \frac{1318912502}{41606671} a^{3} - \frac{2971375452}{41606671} a^{2} - \frac{262374442}{41606671} a + \frac{178192837}{41606671} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20971.2187411 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, \(\Q(\zeta_{7})^+\), 6.0.34992.1, 6.0.84015792.2 x2, 6.0.64827.1, 9.3.148203857088.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |