Normalized defining polynomial
\( x^{18} + 570 x^{16} + 98325 x^{14} + 6783000 x^{12} + 227430000 x^{10} + 4020637500 x^{8} + 38175750000 x^{6} + 188086640625 x^{4} + 434046093750 x^{2} + 361705078125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59271764018320090686642332486201856000000000=-\,2^{18}\cdot 3^{27}\cdot 5^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $270.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3420=2^{2}\cdot 3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3420}(1,·)$, $\chi_{3420}(179,·)$, $\chi_{3420}(961,·)$, $\chi_{3420}(3419,·)$, $\chi_{3420}(2401,·)$, $\chi_{3420}(3299,·)$, $\chi_{3420}(1319,·)$, $\chi_{3420}(3241,·)$, $\chi_{3420}(2279,·)$, $\chi_{3420}(1261,·)$, $\chi_{3420}(2159,·)$, $\chi_{3420}(1139,·)$, $\chi_{3420}(2101,·)$, $\chi_{3420}(2281,·)$, $\chi_{3420}(121,·)$, $\chi_{3420}(1019,·)$, $\chi_{3420}(2459,·)$, $\chi_{3420}(1141,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{7125} a^{6}$, $\frac{1}{7125} a^{7}$, $\frac{1}{35625} a^{8}$, $\frac{1}{35625} a^{9}$, $\frac{1}{178125} a^{10}$, $\frac{1}{178125} a^{11}$, $\frac{1}{355359375} a^{12} - \frac{2}{1246875} a^{10} + \frac{1}{83125} a^{8} - \frac{1}{49875} a^{6} + \frac{3}{35} a^{2} + \frac{2}{7}$, $\frac{1}{355359375} a^{13} - \frac{2}{1246875} a^{11} + \frac{1}{83125} a^{9} - \frac{1}{49875} a^{7} + \frac{3}{35} a^{3} + \frac{2}{7} a$, $\frac{1}{35535937500} a^{14} + \frac{2}{1776796875} a^{12} - \frac{13}{6234375} a^{10} + \frac{2}{1246875} a^{8} + \frac{1}{249375} a^{6} - \frac{8}{875} a^{4} - \frac{6}{175} a^{2} + \frac{13}{140}$, $\frac{1}{35535937500} a^{15} + \frac{2}{1776796875} a^{13} - \frac{13}{6234375} a^{11} + \frac{2}{1246875} a^{9} + \frac{1}{249375} a^{7} - \frac{8}{875} a^{5} - \frac{6}{175} a^{3} + \frac{13}{140} a$, $\frac{1}{2498176406250000} a^{16} - \frac{61}{26296593750000} a^{14} + \frac{193}{262965937500} a^{12} + \frac{81623}{87655312500} a^{10} - \frac{3757}{922687500} a^{8} - \frac{4271}{92268750} a^{6} - \frac{14299}{1230250} a^{4} - \frac{25441}{518000} a^{2} + \frac{48411}{103600}$, $\frac{1}{2498176406250000} a^{17} - \frac{61}{26296593750000} a^{15} + \frac{193}{262965937500} a^{13} + \frac{81623}{87655312500} a^{11} - \frac{3757}{922687500} a^{9} - \frac{4271}{92268750} a^{7} - \frac{14299}{1230250} a^{5} - \frac{25441}{518000} a^{3} + \frac{48411}{103600} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{152}\times C_{7448}$, which has order $289816576$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1472619.082400847 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-285}) \), \(\Q(\zeta_{9})^+\), 3.3.29241.1, 3.3.29241.2, 3.3.361.1, 6.0.1080045576000.11, 6.0.389896452936000.2, 6.0.389896452936000.1, 6.0.534837384000.9, 9.9.25002110044521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |