Normalized defining polynomial
\( x^{18} - 9 x^{17} + 32 x^{16} - 52 x^{15} + 468 x^{14} - 3080 x^{13} + 9624 x^{12} - 17418 x^{11} + 52764 x^{10} - 178658 x^{9} + 328020 x^{8} - 303784 x^{7} + 59180 x^{6} + 192540 x^{5} - 234155 x^{4} + 122397 x^{3} + 27498 x^{2} - 55368 x + 36072 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-591706382841388634460616841610087=-\,3^{9}\cdot 7^{12}\cdot 109^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{18} a^{9} + \frac{1}{3} a^{5} - \frac{2}{9} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{10} + \frac{4}{9} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{18} a^{11} + \frac{4}{9} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{10} + \frac{1}{18} a^{8} - \frac{1}{9} a^{7} - \frac{2}{27} a^{6} - \frac{5}{18} a^{5} + \frac{8}{27} a^{4} + \frac{1}{18} a^{3} - \frac{4}{9} a^{2} - \frac{1}{2} a$, $\frac{1}{54} a^{13} - \frac{1}{54} a^{11} + \frac{1}{18} a^{8} - \frac{2}{27} a^{7} + \frac{1}{18} a^{6} - \frac{1}{27} a^{5} + \frac{7}{18} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{2430} a^{14} - \frac{7}{2430} a^{13} - \frac{2}{405} a^{12} + \frac{14}{1215} a^{11} + \frac{1}{486} a^{10} - \frac{11}{405} a^{9} - \frac{47}{1215} a^{8} - \frac{389}{2430} a^{7} - \frac{11}{810} a^{6} + \frac{463}{1215} a^{5} + \frac{40}{243} a^{4} - \frac{59}{810} a^{3} + \frac{23}{405} a^{2} - \frac{8}{27} a - \frac{7}{45}$, $\frac{1}{2430} a^{15} - \frac{8}{1215} a^{13} - \frac{11}{2430} a^{12} + \frac{7}{810} a^{11} + \frac{59}{2430} a^{10} - \frac{8}{1215} a^{9} + \frac{11}{810} a^{8} + \frac{17}{1215} a^{7} - \frac{16}{243} a^{6} - \frac{211}{810} a^{5} + \frac{913}{2430} a^{4} + \frac{263}{810} a^{3} - \frac{139}{405} a^{2} - \frac{31}{135} a - \frac{4}{45}$, $\frac{1}{32114729682741780} a^{16} - \frac{2}{8028682420685445} a^{15} + \frac{100004911181}{3211472968274178} a^{14} - \frac{233344792751}{1070490989424726} a^{13} - \frac{10393307442992}{8028682420685445} a^{12} + \frac{170221923902167}{16057364841370890} a^{11} - \frac{122441510780147}{8028682420685445} a^{10} - \frac{41937329137640}{1605736484137089} a^{9} + \frac{53688774306383}{16057364841370890} a^{8} - \frac{345174036727271}{5352454947123630} a^{7} - \frac{2523824068097273}{16057364841370890} a^{6} - \frac{16232873463062}{422562232667655} a^{5} - \frac{72223303312775}{3211472968274178} a^{4} + \frac{93874770111044}{297358608173535} a^{3} - \frac{3374101505168711}{10704909894247260} a^{2} + \frac{554817659460611}{1784151649041210} a + \frac{153065644144}{356118093621}$, $\frac{1}{44414671151231881740} a^{17} + \frac{683}{44414671151231881740} a^{16} - \frac{1158430568847319}{7402445191871980290} a^{15} - \frac{503004447073801}{11103667787807970435} a^{14} + \frac{66839074745976589}{11103667787807970435} a^{13} + \frac{1699876412478775}{493496346124798686} a^{12} + \frac{3224457892685909}{274164636735999270} a^{11} + \frac{8024392678137076}{411246955103998905} a^{10} - \frac{89164671269874527}{3701222595935990145} a^{9} + \frac{1135517138796357149}{22207335575615940870} a^{8} + \frac{366084647769788740}{2220733557561594087} a^{7} - \frac{4361800139234927}{411246955103998905} a^{6} + \frac{4563430367572079671}{22207335575615940870} a^{5} - \frac{7346363817966094453}{22207335575615940870} a^{4} + \frac{1009970115033458821}{14804890383743960580} a^{3} + \frac{2063203475453808199}{14804890383743960580} a^{2} - \frac{183137464995679904}{1233740865311996715} a + \frac{255501379324868}{2462556617389215}$
Class group and class number
$C_{2}\times C_{18}\times C_{36}$, which has order $1296$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40248551.3965 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-327}) \), 3.1.16023.1 x3, 3.1.16023.3 x3, 3.1.327.1 x3, 3.1.16023.2 x3, 6.0.83952844983.1, 6.0.83952844983.3, 6.0.34965783.1, 6.0.83952844983.2, 9.1.1345176435162609.4 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $109$ | 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |