Normalized defining polynomial
\( x^{18} + 18 x^{16} - 44 x^{15} + 234 x^{14} - 204 x^{13} + 614 x^{12} - 2664 x^{11} + 24636 x^{10} - 67840 x^{9} + 228168 x^{8} - 423168 x^{7} + 827536 x^{6} - 1017216 x^{5} + 1105152 x^{4} - 712448 x^{3} + 258048 x^{2} - 49152 x + 8192 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-591675863121548288056467444989952=-\,2^{26}\cdot 3^{24}\cdot 23^{3}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{32} a^{13} + \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{10} + \frac{1}{16} a^{9} - \frac{1}{32} a^{8} - \frac{3}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{15} + \frac{1}{128} a^{13} + \frac{1}{64} a^{12} - \frac{3}{128} a^{11} - \frac{3}{64} a^{10} + \frac{3}{128} a^{9} - \frac{1}{32} a^{8} - \frac{1}{64} a^{7} + \frac{1}{8} a^{6} - \frac{3}{32} a^{5} - \frac{1}{2} a^{4} - \frac{7}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{512} a^{16} + \frac{1}{256} a^{14} + \frac{1}{128} a^{13} + \frac{5}{256} a^{12} - \frac{3}{128} a^{11} + \frac{3}{256} a^{10} + \frac{7}{64} a^{9} + \frac{7}{128} a^{8} - \frac{1}{16} a^{7} + \frac{1}{64} a^{6} - \frac{1}{4} a^{5} + \frac{1}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1126841596911196668521978849352950683648} a^{17} - \frac{9588999158689444694040907675802435}{17606899951737447945655919521139854432} a^{16} + \frac{254836887756558560489680737192043297}{563420798455598334260989424676475341824} a^{15} - \frac{672743873898641569670171431165188515}{281710399227799167130494712338237670912} a^{14} + \frac{8723654981602596827389943973878112773}{563420798455598334260989424676475341824} a^{13} + \frac{4463721657108557359648556547843309869}{281710399227799167130494712338237670912} a^{12} + \frac{1091190179122012816169861316366257251}{563420798455598334260989424676475341824} a^{11} - \frac{3043261746522333954727141923311249213}{140855199613899583565247356169118835456} a^{10} - \frac{17523645710993731599624661863833154473}{281710399227799167130494712338237670912} a^{9} + \frac{1729146910564461070935046873893916937}{17606899951737447945655919521139854432} a^{8} + \frac{19749543320931333912666191711073642017}{140855199613899583565247356169118835456} a^{7} - \frac{1887610142592952470133769140813305111}{8803449975868723972827959760569927216} a^{6} + \frac{12782104910290308643615552623654898401}{70427599806949791782623678084559417728} a^{5} - \frac{59527546947398760802562323312027845}{8803449975868723972827959760569927216} a^{4} - \frac{838720541104372440317992215555472057}{2200862493967180993206989940142481804} a^{3} + \frac{438917341939582558325174805727473135}{4401724987934361986413979880284963608} a^{2} - \frac{55713669224517462537293006389287511}{550215623491795248301747485035620451} a + \frac{40572123162782335759689986251423834}{550215623491795248301747485035620451}$
Class group and class number
$C_{2}\times C_{522}$, which has order $1044$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15359142.0184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 864 |
| The 40 conjugacy class representatives for t18n228 |
| Character table for t18n228 is not computed |
Intermediate fields
| 3.3.148.1, 6.0.503792.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37 | Data not computed | ||||||