Normalized defining polynomial
\( x^{18} - 20 x^{15} + 266 x^{14} + 356 x^{13} + 200 x^{12} + 12 x^{11} + 8529 x^{10} + 14892 x^{9} + 9928 x^{8} + 44248 x^{7} + 109300 x^{6} + 48128 x^{5} + 70016 x^{4} + 168256 x^{3} + 238144 x^{2} + 109312 x + 25088 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-58794371317948797436674598764544=-\,2^{18}\cdot 157^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $58.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{224} a^{12} + \frac{1}{56} a^{11} - \frac{5}{224} a^{10} - \frac{3}{56} a^{9} + \frac{13}{224} a^{8} - \frac{3}{56} a^{7} - \frac{23}{224} a^{6} - \frac{5}{28} a^{5} - \frac{17}{112} a^{4} + \frac{25}{56} a^{3} + \frac{9}{28} a^{2} + \frac{5}{14} a$, $\frac{1}{448} a^{13} - \frac{1}{448} a^{12} - \frac{11}{448} a^{11} + \frac{13}{448} a^{10} + \frac{3}{448} a^{9} + \frac{1}{64} a^{8} - \frac{5}{448} a^{7} - \frac{37}{448} a^{6} - \frac{25}{112} a^{5} - \frac{19}{224} a^{4} + \frac{3}{28} a^{3} + \frac{1}{8} a^{2} - \frac{1}{7} a$, $\frac{1}{2688} a^{14} - \frac{1}{2688} a^{13} - \frac{1}{2688} a^{12} + \frac{53}{2688} a^{11} - \frac{25}{896} a^{10} + \frac{139}{2688} a^{9} + \frac{13}{2688} a^{8} + \frac{235}{2688} a^{7} + \frac{17}{1344} a^{6} - \frac{59}{448} a^{5} - \frac{73}{672} a^{4} + \frac{97}{336} a^{3} - \frac{5}{56} a^{2} - \frac{2}{7} a + \frac{1}{3}$, $\frac{1}{13440} a^{15} - \frac{1}{1680} a^{13} - \frac{1}{6720} a^{12} + \frac{1}{96} a^{11} + \frac{59}{6720} a^{10} + \frac{1}{960} a^{9} + \frac{7}{960} a^{8} - \frac{1669}{13440} a^{7} + \frac{145}{1344} a^{6} + \frac{1597}{6720} a^{5} + \frac{23}{420} a^{4} - \frac{89}{1680} a^{3} + \frac{67}{140} a^{2} - \frac{5}{42} a + \frac{4}{15}$, $\frac{1}{335220480} a^{16} - \frac{1321}{67044096} a^{15} - \frac{17473}{335220480} a^{14} + \frac{37393}{335220480} a^{13} - \frac{941}{9577728} a^{12} + \frac{6326903}{335220480} a^{11} - \frac{106237}{111740160} a^{10} + \frac{17576423}{335220480} a^{9} - \frac{1596437}{167610240} a^{8} - \frac{701069}{33522048} a^{7} + \frac{111527}{10475640} a^{6} + \frac{1158047}{6983760} a^{5} + \frac{1976131}{41902560} a^{4} + \frac{500543}{1496520} a^{3} - \frac{499267}{2095128} a^{2} + \frac{97799}{374130} a - \frac{367}{37413}$, $\frac{1}{3145545181129638189611520} a^{17} - \frac{1691755621848317}{1572772590564819094805760} a^{16} - \frac{885041593020888245}{26212876509413651580096} a^{15} + \frac{2751320846313752323}{26212876509413651580096} a^{14} - \frac{251323945642119557531}{524257530188273031601920} a^{13} - \frac{248138287251236076887}{786386295282409547402880} a^{12} + \frac{7635172558086390844523}{786386295282409547402880} a^{11} - \frac{1093330934987287926743}{393193147641204773701440} a^{10} + \frac{167670405283790560590781}{3145545181129638189611520} a^{9} + \frac{3662754764718174617137}{104851506037654606320384} a^{8} - \frac{60009461854792789423477}{786386295282409547402880} a^{7} + \frac{109282178653400441357}{1404261241575731334648} a^{6} - \frac{44572576520933969460691}{786386295282409547402880} a^{5} - \frac{3634642709354622575153}{131064382547068257900480} a^{4} - \frac{1241752294555028375171}{21844063757844709650080} a^{3} + \frac{440571907773162163193}{6553219127353412895024} a^{2} - \frac{163156543993277231189}{877663275984832084155} a - \frac{130669268719589557859}{1755326551969664168310}$
Class group and class number
$C_{10}\times C_{10}$, which has order $100$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2201470732769613}{84076261757400855040} a^{17} - \frac{8482691530059}{1050953271967510688} a^{16} + \frac{349031855844513}{42038130878700427520} a^{15} - \frac{3203860008417139}{6005447268385775360} a^{14} + \frac{14971369520955769}{2101906543935021376} a^{13} + \frac{294648747829334687}{42038130878700427520} a^{12} + \frac{199621071053489821}{42038130878700427520} a^{11} - \frac{34853291280162023}{42038130878700427520} a^{10} + \frac{2647302914937761609}{12010894536771550720} a^{9} + \frac{2677805400578093817}{8407626175740085504} a^{8} + \frac{4281306661882259133}{21019065439350213760} a^{7} + \frac{11826700985041035731}{10509532719675106880} a^{6} + \frac{50922915874997382011}{21019065439350213760} a^{5} + \frac{6485724335386073587}{10509532719675106880} a^{4} + \frac{1813745469067572087}{1050953271967510688} a^{3} + \frac{8601662502598132441}{2627383179918776720} a^{2} + \frac{335952868571793955}{65684579497969418} a + \frac{13066109151154473}{9383511356852774} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1387709278.61 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.98596.1 x3, 3.3.24649.1, 6.0.38884684864.1, 6.0.38884684864.3, 6.0.1577536.1 x2, 9.3.958468597212736.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1577536.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $157$ | 157.9.6.1 | $x^{9} + 7065 x^{6} + 16613426 x^{3} + 13060888875$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 157.9.6.1 | $x^{9} + 7065 x^{6} + 16613426 x^{3} + 13060888875$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |