Normalized defining polynomial
\( x^{18} - 519 x^{15} + 119023 x^{12} - 15206342 x^{9} + 1155284731 x^{6} - 50173783396 x^{3} + 975896298559 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-58433528716150185268173747532031037867=-\,3^{27}\cdot 19^{6}\cdot 739^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 739$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{682614728680440329513581} a^{15} + \frac{34476831071612114843531}{682614728680440329513581} a^{12} + \frac{239848892034221967798346}{682614728680440329513581} a^{9} + \frac{175990825581497156342192}{682614728680440329513581} a^{6} - \frac{279647901085697651258894}{682614728680440329513581} a^{3} + \frac{215613482884533664110141}{682614728680440329513581}$, $\frac{1}{6770855493781287628445209939} a^{16} - \frac{138536313091057774776413412}{6770855493781287628445209939} a^{13} + \frac{1851490993073388395608630018}{6770855493781287628445209939} a^{10} + \frac{239091145863735612486095542}{6770855493781287628445209939} a^{7} + \frac{2649630728836383661520462548}{6770855493781287628445209939} a^{4} - \frac{2526824112092105566195166721}{6770855493781287628445209939} a$, $\frac{1}{67160115642816591986548037384941} a^{17} + \frac{25390569565366737548894760857838}{67160115642816591986548037384941} a^{14} + \frac{29746219675174269940155415892045}{67160115642816591986548037384941} a^{11} - \frac{11733653479577107724483062728745}{67160115642816591986548037384941} a^{8} - \frac{20851585290117529511949726149572}{67160115642816591986548037384941} a^{5} + \frac{25821516029169738909323835540625}{67160115642816591986548037384941} a^{2}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{426221938246262745260}{3534742928569294315081475651839} a^{17} + \frac{180139603504639304663412}{3534742928569294315081475651839} a^{14} - \frac{32860332885956221366084816}{3534742928569294315081475651839} a^{11} + \frac{3149608046671258531011521541}{3534742928569294315081475651839} a^{8} - \frac{167291850270733017453148684374}{3534742928569294315081475651839} a^{5} + \frac{4041177607590361091263661047129}{3534742928569294315081475651839} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22671106884.393993 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 6.0.5323041387.4, Deg 6, 6.0.3880497171123.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.1 | $x^{3} + 76$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 739 | Data not computed | ||||||