Properties

Label 18.0.58239839403...5472.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 3^{27}\cdot 79^{15}$
Root discriminant $396.34$
Ramified primes $2, 3, 79$
Class number $521240832$ (GRH)
Class group $[2, 2, 2, 6, 756, 14364]$ (GRH)
Galois group $C_6 \times C_3$ (as 18T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![13312053, 0, 79872318, 0, 173056689, 0, 170304408, 0, 82905444, 0, 19771488, 0, 2045784, 0, 59013, 0, 474, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 474*x^16 + 59013*x^14 + 2045784*x^12 + 19771488*x^10 + 82905444*x^8 + 170304408*x^6 + 173056689*x^4 + 79872318*x^2 + 13312053)
 
gp: K = bnfinit(x^18 + 474*x^16 + 59013*x^14 + 2045784*x^12 + 19771488*x^10 + 82905444*x^8 + 170304408*x^6 + 173056689*x^4 + 79872318*x^2 + 13312053, 1)
 

Normalized defining polynomial

\( x^{18} + 474 x^{16} + 59013 x^{14} + 2045784 x^{12} + 19771488 x^{10} + 82905444 x^{8} + 170304408 x^{6} + 173056689 x^{4} + 79872318 x^{2} + 13312053 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-58239839403585271065831634525715076154762985472=-\,2^{18}\cdot 3^{27}\cdot 79^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $396.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 79$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2844=2^{2}\cdot 3^{2}\cdot 79\)
Dirichlet character group:    $\lbrace$$\chi_{2844}(1,·)$, $\chi_{2844}(1477,·)$, $\chi_{2844}(2315,·)$, $\chi_{2844}(529,·)$, $\chi_{2844}(1367,·)$, $\chi_{2844}(949,·)$, $\chi_{2844}(2843,·)$, $\chi_{2844}(947,·)$, $\chi_{2844}(419,·)$, $\chi_{2844}(1895,·)$, $\chi_{2844}(1129,·)$, $\chi_{2844}(2663,·)$, $\chi_{2844}(2077,·)$, $\chi_{2844}(1715,·)$, $\chi_{2844}(181,·)$, $\chi_{2844}(1897,·)$, $\chi_{2844}(2425,·)$, $\chi_{2844}(767,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{237} a^{6}$, $\frac{1}{237} a^{7}$, $\frac{1}{237} a^{8}$, $\frac{1}{237} a^{9}$, $\frac{1}{237} a^{10}$, $\frac{1}{237} a^{11}$, $\frac{1}{954873} a^{12} + \frac{1}{1343} a^{10} + \frac{4}{4029} a^{8} + \frac{1}{17} a^{4} - \frac{3}{17} a^{2} - \frac{4}{17}$, $\frac{1}{954873} a^{13} + \frac{1}{1343} a^{11} + \frac{4}{4029} a^{9} + \frac{1}{17} a^{5} - \frac{3}{17} a^{3} - \frac{4}{17} a$, $\frac{1}{133682220} a^{14} + \frac{4}{11140185} a^{12} - \frac{29}{20145} a^{10} + \frac{11}{8295} a^{8} + \frac{106}{141015} a^{6} + \frac{26}{85} a^{4} - \frac{171}{595} a^{2} + \frac{29}{140}$, $\frac{1}{133682220} a^{15} + \frac{4}{11140185} a^{13} - \frac{29}{20145} a^{11} + \frac{11}{8295} a^{9} + \frac{106}{141015} a^{7} + \frac{26}{85} a^{5} - \frac{171}{595} a^{3} + \frac{29}{140} a$, $\frac{1}{6991609516088400} a^{16} - \frac{3334819}{6991609516088400} a^{14} + \frac{2409671}{38842275089380} a^{12} - \frac{1486343799}{2458371841100} a^{10} + \frac{15040718177}{7375115523300} a^{8} - \frac{311013977}{1843778880825} a^{6} + \frac{225719227}{3111863090} a^{4} + \frac{47929377841}{124474523600} a^{2} + \frac{33880883409}{124474523600}$, $\frac{1}{6991609516088400} a^{17} - \frac{3334819}{6991609516088400} a^{15} + \frac{2409671}{38842275089380} a^{13} - \frac{1486343799}{2458371841100} a^{11} + \frac{15040718177}{7375115523300} a^{9} - \frac{311013977}{1843778880825} a^{7} + \frac{225719227}{3111863090} a^{5} + \frac{47929377841}{124474523600} a^{3} + \frac{33880883409}{124474523600} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{756}\times C_{14364}$, which has order $521240832$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 33738401.24471492 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_6$ (as 18T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 18
The 18 conjugacy class representatives for $C_6 \times C_3$
Character table for $C_6 \times C_3$

Intermediate fields

\(\Q(\sqrt{-237}) \), \(\Q(\zeta_{9})^+\), 3.3.6241.1, 3.3.505521.1, 3.3.505521.2, 6.0.621087144768.9, 6.0.5317153457472.1, 6.0.3876204870497088.1, 6.0.3876204870497088.2, 9.9.129186640449535761.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
3Data not computed
79Data not computed