Normalized defining polynomial
\( x^{18} - x^{17} + 4 x^{16} - 20 x^{15} + 110 x^{14} - 638 x^{13} + 3828 x^{12} - 10452 x^{11} + 27225 x^{10} - 60665 x^{9} + 120032 x^{8} - 195632 x^{7} + 494368 x^{6} - 886384 x^{5} + 698944 x^{4} + 424704 x^{3} - 566272 x^{2} - 573440 x + 1048576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-581652040856250348581103942808504447=-\,127^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{127}(1,·)$, $\chi_{127}(68,·)$, $\chi_{127}(75,·)$, $\chi_{127}(19,·)$, $\chi_{127}(20,·)$, $\chi_{127}(22,·)$, $\chi_{127}(24,·)$, $\chi_{127}(90,·)$, $\chi_{127}(28,·)$, $\chi_{127}(99,·)$, $\chi_{127}(37,·)$, $\chi_{127}(103,·)$, $\chi_{127}(105,·)$, $\chi_{127}(107,·)$, $\chi_{127}(108,·)$, $\chi_{127}(52,·)$, $\chi_{127}(59,·)$, $\chi_{127}(126,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{7} + \frac{3}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{128} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} + \frac{1}{128} a^{4} - \frac{1}{32} a^{3} - \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{9} + \frac{1}{64} a^{7} + \frac{1}{128} a^{5} - \frac{1}{32} a^{3}$, $\frac{1}{256} a^{10} - \frac{1}{256} a^{9} + \frac{3}{128} a^{7} - \frac{3}{256} a^{6} + \frac{15}{256} a^{5} - \frac{3}{128} a^{4} + \frac{3}{64} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{512} a^{11} + \frac{1}{512} a^{9} + \frac{15}{512} a^{7} + \frac{27}{512} a^{5} + \frac{5}{128} a^{3} - \frac{1}{8} a$, $\frac{1}{2048} a^{12} - \frac{1}{1024} a^{11} - \frac{3}{2048} a^{10} + \frac{1}{1024} a^{9} + \frac{7}{2048} a^{8} - \frac{11}{1024} a^{7} - \frac{41}{2048} a^{6} + \frac{7}{1024} a^{5} + \frac{25}{512} a^{4} - \frac{47}{256} a^{3} + \frac{7}{32} a^{2} - \frac{1}{16} a$, $\frac{1}{2048} a^{13} + \frac{1}{2048} a^{11} - \frac{1}{512} a^{10} + \frac{3}{2048} a^{9} - \frac{1}{256} a^{8} + \frac{3}{2048} a^{7} + \frac{15}{512} a^{6} - \frac{7}{256} a^{5} - \frac{3}{128} a^{4} + \frac{19}{128} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a$, $\frac{1}{8192} a^{14} + \frac{1}{8192} a^{13} - \frac{1}{8192} a^{12} + \frac{1}{8192} a^{11} - \frac{11}{8192} a^{10} - \frac{25}{8192} a^{9} + \frac{13}{8192} a^{8} - \frac{53}{8192} a^{7} - \frac{29}{4096} a^{6} + \frac{27}{2048} a^{5} - \frac{41}{1024} a^{4} + \frac{15}{256} a^{3} - \frac{5}{64} a^{2} + \frac{1}{16} a$, $\frac{1}{65536} a^{15} + \frac{1}{32768} a^{14} + \frac{1}{16384} a^{13} - \frac{3}{16384} a^{12} - \frac{7}{32768} a^{11} - \frac{5}{4096} a^{10} + \frac{1}{8192} a^{9} - \frac{55}{16384} a^{8} - \frac{1467}{65536} a^{7} - \frac{857}{32768} a^{6} - \frac{97}{16384} a^{5} + \frac{77}{8192} a^{4} + \frac{61}{1024} a^{3} - \frac{21}{512} a^{2} + \frac{1}{32} a$, $\frac{1}{131072} a^{16} - \frac{1}{16384} a^{14} - \frac{7}{32768} a^{13} - \frac{7}{65536} a^{12} + \frac{1}{32768} a^{11} + \frac{3}{4096} a^{10} + \frac{39}{32768} a^{9} - \frac{331}{131072} a^{8} - \frac{821}{32768} a^{7} + \frac{221}{8192} a^{6} + \frac{21}{8192} a^{5} - \frac{477}{8192} a^{4} + \frac{107}{512} a^{3} + \frac{33}{512} a^{2} - \frac{7}{32} a$, $\frac{1}{123708567156126384128} a^{17} - \frac{460082048514963}{123708567156126384128} a^{16} + \frac{45335281366443}{61854283578063192064} a^{15} + \frac{542483912833233}{15463570894515798016} a^{14} - \frac{8727872538041273}{61854283578063192064} a^{13} + \frac{9213752562820459}{61854283578063192064} a^{12} - \frac{7126007998981}{120809147613404672} a^{11} + \frac{22444299684699979}{30927141789031596032} a^{10} + \frac{463506581055048321}{123708567156126384128} a^{9} - \frac{258346518559340027}{123708567156126384128} a^{8} + \frac{1065388015005684425}{61854283578063192064} a^{7} + \frac{178935744873005689}{30927141789031596032} a^{6} - \frac{175840133893199215}{15463570894515798016} a^{5} + \frac{268683859689415}{20240276039942144} a^{4} - \frac{228430223421775433}{966473180907237376} a^{3} - \frac{56614400829781787}{241618295226809344} a^{2} - \frac{4082084364862853}{15101143451675584} a - \frac{105200267450820}{235955366432431}$
Class group and class number
$C_{200135}$, which has order $200135$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16450307908.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-127}) \), 3.3.16129.1, 6.0.33038369407.1, 9.9.67675234241018881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | $18$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 127 | Data not computed | ||||||