Normalized defining polynomial
\( x^{18} - 24 x^{16} + 180 x^{14} + 101 x^{12} - 6168 x^{10} + 14616 x^{8} + 39119 x^{6} + 35820 x^{4} - 19368 x^{2} + 2107 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-581414905561488081454979002368=-\,2^{12}\cdot 3^{24}\cdot 43^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{36} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{5}{36}$, $\frac{1}{36} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{5}{36} a$, $\frac{1}{85140} a^{14} + \frac{569}{85140} a^{12} - \frac{969}{4730} a^{10} + \frac{204}{2365} a^{8} - \frac{1}{2} a^{7} + \frac{4027}{14190} a^{6} - \frac{1}{2} a^{5} - \frac{6649}{14190} a^{4} - \frac{1}{2} a^{3} + \frac{6989}{85140} a^{2} - \frac{1}{2} a - \frac{959}{1980}$, $\frac{1}{595980} a^{15} + \frac{1916}{148995} a^{13} + \frac{5157}{66220} a^{11} - \frac{1}{4} a^{10} + \frac{7911}{66220} a^{9} - \frac{1}{4} a^{8} + \frac{15149}{198660} a^{7} + \frac{1}{4} a^{6} - \frac{62963}{198660} a^{5} - \frac{1}{4} a^{4} + \frac{14137}{297990} a^{3} + \frac{1}{4} a^{2} + \frac{2341}{13860} a + \frac{1}{4}$, $\frac{1}{3797409341880} a^{16} + \frac{4682131}{3797409341880} a^{14} - \frac{48542760599}{3797409341880} a^{12} - \frac{6798883345}{42193437132} a^{10} - \frac{24801037585}{126580311396} a^{8} + \frac{29008411463}{126580311396} a^{6} - \frac{1}{2} a^{5} + \frac{3624148859}{11904104520} a^{4} - \frac{1690162363369}{3797409341880} a^{2} - \frac{6222216019}{12615977880}$, $\frac{1}{3797409341880} a^{17} - \frac{337915}{759481868376} a^{15} + \frac{8108077447}{3797409341880} a^{13} + \frac{53905483}{4906213620} a^{11} - \frac{5912806847}{90414508140} a^{9} + \frac{255004959463}{632901556980} a^{7} - \frac{1}{2} a^{6} + \frac{90591355}{2380820904} a^{5} - \frac{1}{2} a^{4} + \frac{977741027597}{3797409341880} a^{3} - \frac{24128180539}{88311845160} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11837492.6514 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 3.1.13932.1 x3, 3.1.13932.2 x3, 3.1.3483.1 x3, 3.1.172.1 x3, 6.0.8346326832.1, 6.0.8346326832.2, 6.0.521645427.1, 6.0.1272112.1, 9.1.116281025423424.4 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{18}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |