Normalized defining polynomial
\( x^{18} - 3 x^{17} + 16 x^{16} - 48 x^{15} + 490 x^{14} - 914 x^{13} + 8852 x^{12} - 12672 x^{11} + 127488 x^{10} - 130764 x^{9} + 1475240 x^{8} - 834166 x^{7} + 12750158 x^{6} - 3226096 x^{5} + 76232667 x^{4} - 10655757 x^{3} + 281458960 x^{2} - 20839308 x + 478852184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-580827582411592412573117020901351303=-\,7^{12}\cdot 13^{12}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2093=7\cdot 13\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2093}(1,·)$, $\chi_{2093}(898,·)$, $\chi_{2093}(919,·)$, $\chi_{2093}(781,·)$, $\chi_{2093}(1933,·)$, $\chi_{2093}(22,·)$, $\chi_{2093}(599,·)$, $\chi_{2093}(666,·)$, $\chi_{2093}(1563,·)$, $\chi_{2093}(737,·)$, $\chi_{2093}(484,·)$, $\chi_{2093}(1381,·)$, $\chi_{2093}(620,·)$, $\chi_{2093}(1264,·)$, $\chi_{2093}(438,·)$, $\chi_{2093}(183,·)$, $\chi_{2093}(1080,·)$, $\chi_{2093}(1082,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a$, $\frac{1}{11195869914} a^{15} - \frac{238593709}{11195869914} a^{14} - \frac{280019323}{11195869914} a^{13} - \frac{321499994}{5597934957} a^{12} + \frac{766711681}{11195869914} a^{11} - \frac{29527651}{11195869914} a^{10} + \frac{88754407}{5597934957} a^{9} - \frac{555501947}{5597934957} a^{8} - \frac{1088226199}{3731956638} a^{7} + \frac{4883421035}{11195869914} a^{6} - \frac{1562129564}{5597934957} a^{5} + \frac{10539063}{1243985546} a^{4} + \frac{3316732063}{11195869914} a^{3} + \frac{93765858}{621992773} a^{2} - \frac{131210609}{1243985546} a - \frac{1773297826}{5597934957}$, $\frac{1}{4052904908868} a^{16} + \frac{17}{675484151478} a^{15} - \frac{555771451}{11195869914} a^{14} - \frac{14040808964}{1013226227217} a^{13} - \frac{54741998989}{675484151478} a^{12} + \frac{4274030243}{675484151478} a^{11} - \frac{12880046827}{2026452454434} a^{10} - \frac{2412578411}{1013226227217} a^{9} - \frac{1242486599}{2026452454434} a^{8} + \frac{549387783625}{2026452454434} a^{7} + \frac{183247930036}{1013226227217} a^{6} + \frac{807783833437}{2026452454434} a^{5} + \frac{340041336599}{2026452454434} a^{4} - \frac{692404603849}{2026452454434} a^{3} - \frac{6157709215}{14526540892} a^{2} - \frac{194868440450}{1013226227217} a + \frac{93985622269}{1013226227217}$, $\frac{1}{19415620758072797889009544931185105956} a^{17} - \frac{393476967097673299750093}{4853905189518199472252386232796276489} a^{16} - \frac{33548296442611663500733256}{1617968396506066490750795410932092163} a^{15} - \frac{446542968877577012267359532982639259}{9707810379036398944504772465592552978} a^{14} + \frac{214586938836326241371865666698578199}{3235936793012132981501590821864184326} a^{13} - \frac{336303578009383412372872449687725504}{4853905189518199472252386232796276489} a^{12} + \frac{27986152217352098238871272621750283}{1078645597670710993833863607288061442} a^{11} + \frac{223720352930753449297799364476943499}{4853905189518199472252386232796276489} a^{10} + \frac{185388270966223173053893041546214691}{4853905189518199472252386232796276489} a^{9} - \frac{1301557974107856342897985611300134437}{9707810379036398944504772465592552978} a^{8} + \frac{3553281009798153224361279866690796535}{9707810379036398944504772465592552978} a^{7} - \frac{123300481377761693371714701874469543}{9707810379036398944504772465592552978} a^{6} + \frac{578107011202184620965107402256464906}{1617968396506066490750795410932092163} a^{5} - \frac{243322068822537070668170509504717127}{1078645597670710993833863607288061442} a^{4} + \frac{4854628471906431390730066668676618339}{19415620758072797889009544931185105956} a^{3} - \frac{36039021268013001706377334577455961}{4853905189518199472252386232796276489} a^{2} + \frac{1466535657982275679278639396640681769}{3235936793012132981501590821864184326} a - \frac{1088170592258589917335832416351560380}{4853905189518199472252386232796276489}$
Class group and class number
$C_{3}\times C_{6}\times C_{13338}$, which has order $240084$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.0.834351550487.2, 6.0.347501687.1, 6.0.29212967.1, 6.0.834351550487.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |