Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 2 x^{15} - 21 x^{14} + 41 x^{13} - 54 x^{12} + 43 x^{11} - 23 x^{10} - 108 x^{9} + 353 x^{8} - 597 x^{7} + 619 x^{6} - 314 x^{5} + 76 x^{4} + 72 x^{3} + 40 x^{2} + 12 x + 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-57892131675000000000000=-\,2^{12}\cdot 3^{9}\cdot 5^{14}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} + \frac{4}{15} a^{11} - \frac{1}{5} a^{10} + \frac{1}{6} a^{9} - \frac{1}{3} a^{8} - \frac{2}{5} a^{7} - \frac{11}{30} a^{6} + \frac{2}{5} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{5} a^{2} - \frac{4}{15} a - \frac{7}{15}$, $\frac{1}{60} a^{13} + \frac{1}{3} a^{11} + \frac{23}{60} a^{10} - \frac{1}{3} a^{9} + \frac{2}{15} a^{8} - \frac{1}{12} a^{7} - \frac{1}{3} a^{6} - \frac{4}{15} a^{5} - \frac{1}{4} a^{4} + \frac{1}{15} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{2}{15}$, $\frac{1}{60} a^{14} - \frac{17}{60} a^{11} - \frac{1}{3} a^{10} + \frac{7}{15} a^{9} + \frac{1}{4} a^{8} - \frac{1}{3} a^{7} + \frac{2}{5} a^{6} - \frac{1}{4} a^{5} + \frac{2}{5} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{7}{15} a - \frac{1}{3}$, $\frac{1}{60} a^{15} - \frac{1}{60} a^{12} - \frac{1}{5} a^{11} - \frac{2}{15} a^{10} - \frac{5}{12} a^{9} + \frac{1}{5} a^{7} - \frac{11}{60} a^{6} - \frac{2}{5} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{15} a^{2} - \frac{7}{15} a + \frac{4}{15}$, $\frac{1}{60} a^{16} - \frac{1}{5} a^{11} - \frac{7}{30} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{15} a^{6} - \frac{1}{5} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a + \frac{1}{15}$, $\frac{1}{1204364220} a^{17} - \frac{754433}{602182110} a^{16} + \frac{362681}{200727370} a^{15} + \frac{198108}{100363685} a^{14} + \frac{350014}{100363685} a^{13} - \frac{6599809}{602182110} a^{12} + \frac{47618059}{200727370} a^{11} - \frac{1312056}{20072737} a^{10} - \frac{34215907}{200727370} a^{9} - \frac{55620469}{301091055} a^{8} + \frac{131411024}{301091055} a^{7} - \frac{47442683}{200727370} a^{6} - \frac{1228891}{80290948} a^{5} - \frac{192841553}{602182110} a^{4} + \frac{120025993}{301091055} a^{3} - \frac{48802839}{200727370} a^{2} - \frac{66470023}{301091055} a - \frac{25005376}{100363685}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13738835}{240872844} a^{17} - \frac{42238045}{240872844} a^{16} + \frac{35133161}{120436422} a^{15} + \frac{23844295}{240872844} a^{14} - \frac{145692715}{120436422} a^{13} + \frac{95261825}{40145474} a^{12} - \frac{765568805}{240872844} a^{11} + \frac{158192696}{60218211} a^{10} - \frac{61207425}{40145474} a^{9} - \frac{475019125}{80290948} a^{8} + \frac{2459458435}{120436422} a^{7} - \frac{4191303455}{120436422} a^{6} + \frac{2229388946}{60218211} a^{5} - \frac{1610479195}{80290948} a^{4} + \frac{418422565}{60218211} a^{3} + \frac{97100075}{60218211} a^{2} + \frac{122494065}{40145474} a + \frac{18268881}{20072737} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45128.715573030706 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.300.1 x3, 3.1.140.1, 6.0.529200.1, 6.0.270000.1, 9.1.46305000000.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |