Properties

Label 18.0.577...375.1
Degree $18$
Signature $[0, 9]$
Discriminant $-5.770\times 10^{27}$
Root discriminant \(34.86\)
Ramified primes $3,5$
Class number $74$ (GRH)
Class group [74] (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779)
 
gp: K = bnfinit(y^18 + 18*y^16 + 135*y^14 + 546*y^12 + 1287*y^10 - 76*y^9 + 1782*y^8 - 684*y^7 + 1386*y^6 - 2052*y^5 + 540*y^4 - 2280*y^3 + 81*y^2 - 684*y + 5779, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779)
 

\( x^{18} + 18 x^{16} + 135 x^{14} + 546 x^{12} + 1287 x^{10} - 76 x^{9} + 1782 x^{8} - 684 x^{7} + 1386 x^{6} - 2052 x^{5} + 540 x^{4} - 2280 x^{3} + 81 x^{2} - 684 x + 5779 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-5770142004982097067662109375\) \(\medspace = -\,3^{45}\cdot 5^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(34.86\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Ramified primes:   \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-15}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(135=3^{3}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{135}(1,·)$, $\chi_{135}(134,·)$, $\chi_{135}(74,·)$, $\chi_{135}(76,·)$, $\chi_{135}(14,·)$, $\chi_{135}(16,·)$, $\chi_{135}(89,·)$, $\chi_{135}(91,·)$, $\chi_{135}(29,·)$, $\chi_{135}(31,·)$, $\chi_{135}(104,·)$, $\chi_{135}(106,·)$, $\chi_{135}(44,·)$, $\chi_{135}(46,·)$, $\chi_{135}(119,·)$, $\chi_{135}(121,·)$, $\chi_{135}(59,·)$, $\chi_{135}(61,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{34}a^{9}+\frac{9}{34}a^{7}-\frac{7}{34}a^{5}-\frac{2}{17}a^{3}+\frac{9}{34}a+\frac{13}{34}$, $\frac{1}{34}a^{10}+\frac{9}{34}a^{8}-\frac{7}{34}a^{6}-\frac{2}{17}a^{4}+\frac{9}{34}a^{2}+\frac{13}{34}a$, $\frac{1}{34}a^{11}+\frac{7}{17}a^{7}-\frac{9}{34}a^{5}+\frac{11}{34}a^{3}+\frac{13}{34}a^{2}-\frac{13}{34}a-\frac{15}{34}$, $\frac{1}{34}a^{12}+\frac{7}{17}a^{8}-\frac{9}{34}a^{6}+\frac{11}{34}a^{4}+\frac{13}{34}a^{3}-\frac{13}{34}a^{2}-\frac{15}{34}a$, $\frac{1}{34}a^{13}+\frac{1}{34}a^{7}+\frac{7}{34}a^{5}+\frac{13}{34}a^{4}+\frac{9}{34}a^{3}-\frac{15}{34}a^{2}+\frac{5}{17}a-\frac{6}{17}$, $\frac{1}{196418}a^{14}-\frac{38}{98209}a^{13}+\frac{7}{98209}a^{12}-\frac{494}{98209}a^{11}+\frac{77}{196418}a^{10}+\frac{837}{196418}a^{9}+\frac{105}{98209}a^{8}+\frac{2361}{11554}a^{7}+\frac{147}{98209}a^{6}+\frac{33523}{98209}a^{5}+\frac{5973}{196418}a^{4}-\frac{12693}{196418}a^{3}+\frac{23157}{196418}a^{2}+\frac{34168}{98209}a+\frac{86657}{196418}$, $\frac{1}{196418}a^{15}+\frac{15}{196418}a^{13}+\frac{38}{98209}a^{12}+\frac{45}{98209}a^{11}+\frac{456}{98209}a^{10}+\frac{275}{196418}a^{9}+\frac{2052}{98209}a^{8}+\frac{225}{98209}a^{7}-\frac{3917}{11554}a^{6}+\frac{189}{98209}a^{5}-\frac{24895}{98209}a^{4}-\frac{5637}{196418}a^{3}-\frac{83919}{196418}a^{2}-\frac{8658}{98209}a+\frac{23184}{98209}$, $\frac{1}{196418}a^{16}+\frac{608}{98209}a^{13}-\frac{60}{98209}a^{12}-\frac{1599}{196418}a^{11}-\frac{440}{98209}a^{10}-\frac{1337}{98209}a^{9}-\frac{1350}{98209}a^{8}-\frac{73613}{196418}a^{7}-\frac{2016}{98209}a^{6}+\frac{21075}{98209}a^{5}-\frac{47616}{98209}a^{4}+\frac{89145}{196418}a^{3}-\frac{360}{98209}a^{2}+\frac{42148}{98209}a+\frac{17301}{196418}$, $\frac{1}{196418}a^{17}-\frac{4}{5777}a^{13}-\frac{38}{5777}a^{12}-\frac{32}{5777}a^{11}+\frac{1903}{196418}a^{10}+\frac{2037}{196418}a^{9}+\frac{5935}{98209}a^{8}+\frac{45465}{196418}a^{7}+\frac{9856}{98209}a^{6}-\frac{46151}{196418}a^{5}+\frac{32279}{98209}a^{4}+\frac{72925}{196418}a^{3}-\frac{4975}{98209}a^{2}-\frac{11673}{98209}a-\frac{77533}{196418}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{74}$, which has order $74$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{4}{98209}a^{15}+\frac{60}{98209}a^{13}+\frac{304}{98209}a^{12}+\frac{360}{98209}a^{11}+\frac{3648}{98209}a^{10}+\frac{1100}{98209}a^{9}+\frac{16416}{98209}a^{8}+\frac{1800}{98209}a^{7}+\frac{1663}{5777}a^{6}+\frac{1512}{98209}a^{5}-\frac{2742}{98209}a^{4}-\frac{22548}{98209}a^{3}-\frac{41049}{98209}a^{2}-\frac{69264}{98209}a-\frac{10946}{98209}$, $\frac{72}{98209}a^{15}+\frac{1080}{98209}a^{13}-\frac{305}{98209}a^{12}+\frac{6480}{98209}a^{11}-\frac{3660}{98209}a^{10}+\frac{19800}{98209}a^{9}-\frac{16470}{98209}a^{8}+\frac{32400}{98209}a^{7}-\frac{34160}{98209}a^{6}+\frac{27216}{98209}a^{5}-\frac{32025}{98209}a^{4}+\frac{10080}{98209}a^{3}-\frac{10980}{98209}a^{2}+\frac{1080}{98209}a-\frac{610}{98209}$, $\frac{114}{98209}a^{14}+\frac{3}{196418}a^{13}+\frac{1596}{98209}a^{12}+\frac{39}{196418}a^{11}+\frac{8778}{98209}a^{10}+\frac{195}{196418}a^{9}+\frac{23940}{98209}a^{8}+\frac{234}{98209}a^{7}+\frac{33516}{98209}a^{6}-\frac{16785}{196418}a^{5}+\frac{15803}{196418}a^{4}-\frac{43191}{98209}a^{3}-\frac{52184}{98209}a^{2}-\frac{43308}{98209}a-\frac{28657}{98209}$, $\frac{233}{196418}a^{14}-\frac{377}{196418}a^{13}+\frac{1631}{98209}a^{12}-\frac{4901}{196418}a^{11}+\frac{17941}{196418}a^{10}-\frac{24505}{196418}a^{9}+\frac{24465}{98209}a^{8}-\frac{29406}{98209}a^{7}+\frac{34251}{98209}a^{6}-\frac{34307}{98209}a^{5}+\frac{22834}{98209}a^{4}-\frac{34307}{196418}a^{3}+\frac{11417}{196418}a^{2}-\frac{4901}{196418}a+\frac{233}{98209}$, $\frac{21}{196418}a^{17}-\frac{38}{98209}a^{16}+\frac{349}{196418}a^{15}-\frac{494}{98209}a^{14}+\frac{1191}{98209}a^{13}-\frac{2660}{98209}a^{12}+\frac{4300}{98209}a^{11}-\frac{7448}{98209}a^{10}+\frac{17619}{196418}a^{9}-\frac{24929}{196418}a^{8}+\frac{1539}{11554}a^{7}-\frac{15469}{98209}a^{6}+\frac{2091}{11554}a^{5}-\frac{39989}{196418}a^{4}+\frac{43821}{196418}a^{3}-\frac{4565}{196418}a^{2}-\frac{270}{1853}a-\frac{45076}{98209}$, $\frac{21}{196418}a^{17}+\frac{21}{11554}a^{15}+\frac{147}{11554}a^{13}+\frac{273}{5777}a^{11}+\frac{798}{98209}a^{10}+\frac{1155}{11554}a^{9}+\frac{599}{11554}a^{8}+\frac{693}{5777}a^{7}+\frac{4822}{98209}a^{6}+\frac{441}{5777}a^{5}-\frac{17870}{98209}a^{4}+\frac{126}{5777}a^{3}-\frac{26266}{98209}a^{2}-\frac{60480}{98209}a-\frac{4181}{98209}$, $\frac{89}{196418}a^{16}+\frac{712}{98209}a^{14}+\frac{4628}{98209}a^{12}-\frac{987}{196418}a^{11}+\frac{15664}{98209}a^{10}-\frac{10857}{196418}a^{9}+\frac{29370}{98209}a^{8}-\frac{21714}{98209}a^{7}+\frac{29904}{98209}a^{6}-\frac{75999}{196418}a^{5}+\frac{14952}{98209}a^{4}-\frac{54285}{196418}a^{3}+\frac{2848}{98209}a^{2}-\frac{10857}{196418}a+\frac{89}{98209}$, $\frac{38}{98209}a^{16}+\frac{608}{98209}a^{14}+\frac{3952}{98209}a^{12}+\frac{1}{196418}a^{11}+\frac{13376}{98209}a^{10}+\frac{11}{196418}a^{9}+\frac{25080}{98209}a^{8}-\frac{5733}{196418}a^{7}+\frac{25536}{98209}a^{6}-\frac{20181}{98209}a^{5}+\frac{12768}{98209}a^{4}-\frac{80823}{196418}a^{3}-\frac{70237}{196418}a^{2}-\frac{20214}{98209}a-\frac{75025}{98209}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 40934.0329443 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 40934.0329443 \cdot 74}{2\cdot\sqrt{5770142004982097067662109375}}\cr\approx \mathstrut & 0.304306916445 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 18*x^16 + 135*x^14 + 546*x^12 + 1287*x^10 - 76*x^9 + 1782*x^8 - 684*x^7 + 1386*x^6 - 2052*x^5 + 540*x^4 - 2280*x^3 + 81*x^2 - 684*x + 5779);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{18}$ (as 18T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\zeta_{9})^+\), 6.0.2460375.1, \(\Q(\zeta_{27})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.9.0.1}{9} }^{2}$ R R $18$ $18$ $18$ ${\href{/padicField/17.3.0.1}{3} }^{6}$ ${\href{/padicField/19.3.0.1}{3} }^{6}$ ${\href{/padicField/23.9.0.1}{9} }^{2}$ $18$ ${\href{/padicField/31.9.0.1}{9} }^{2}$ ${\href{/padicField/37.6.0.1}{6} }^{3}$ $18$ $18$ ${\href{/padicField/47.9.0.1}{9} }^{2}$ ${\href{/padicField/53.1.0.1}{1} }^{18}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$18$$1$$45$
\(5\) Copy content Toggle raw display 5.18.9.2$x^{18} + 31250 x^{6} + 390625 x^{2} - 5859375$$2$$9$$9$$C_{18}$$[\ ]_{2}^{9}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.15.2t1.a.a$1$ $ 3 \cdot 5 $ \(\Q(\sqrt{-15}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.27.9t1.a.a$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.a$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.b$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.b$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$
* 1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
* 1.45.6t1.b.a$1$ $ 3^{2} \cdot 5 $ 6.0.2460375.1 $C_6$ (as 6T1) $0$ $-1$
* 1.27.9t1.a.c$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.c$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.d$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.d$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$
* 1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
* 1.45.6t1.b.b$1$ $ 3^{2} \cdot 5 $ 6.0.2460375.1 $C_6$ (as 6T1) $0$ $-1$
* 1.27.9t1.a.e$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.e$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$
* 1.27.9t1.a.f$1$ $ 3^{3}$ \(\Q(\zeta_{27})^+\) $C_9$ (as 9T1) $0$ $1$
* 1.135.18t1.b.f$1$ $ 3^{3} \cdot 5 $ 18.0.5770142004982097067662109375.1 $C_{18}$ (as 18T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.