Normalized defining polynomial
\( x^{18} + 18 x^{16} + 135 x^{14} + 546 x^{12} + 1287 x^{10} - 76 x^{9} + 1782 x^{8} - 684 x^{7} + 1386 x^{6} - 2052 x^{5} + 540 x^{4} - 2280 x^{3} + 81 x^{2} - 684 x + 5779 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-5770142004982097067662109375\)
\(\medspace = -\,3^{45}\cdot 5^{9}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(34.86\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-15}) \) | ||
$\card{ \Gal(K/\Q) }$: | $18$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(135=3^{3}\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{135}(1,·)$, $\chi_{135}(134,·)$, $\chi_{135}(74,·)$, $\chi_{135}(76,·)$, $\chi_{135}(14,·)$, $\chi_{135}(16,·)$, $\chi_{135}(89,·)$, $\chi_{135}(91,·)$, $\chi_{135}(29,·)$, $\chi_{135}(31,·)$, $\chi_{135}(104,·)$, $\chi_{135}(106,·)$, $\chi_{135}(44,·)$, $\chi_{135}(46,·)$, $\chi_{135}(119,·)$, $\chi_{135}(121,·)$, $\chi_{135}(59,·)$, $\chi_{135}(61,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{256}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{34}a^{9}+\frac{9}{34}a^{7}-\frac{7}{34}a^{5}-\frac{2}{17}a^{3}+\frac{9}{34}a+\frac{13}{34}$, $\frac{1}{34}a^{10}+\frac{9}{34}a^{8}-\frac{7}{34}a^{6}-\frac{2}{17}a^{4}+\frac{9}{34}a^{2}+\frac{13}{34}a$, $\frac{1}{34}a^{11}+\frac{7}{17}a^{7}-\frac{9}{34}a^{5}+\frac{11}{34}a^{3}+\frac{13}{34}a^{2}-\frac{13}{34}a-\frac{15}{34}$, $\frac{1}{34}a^{12}+\frac{7}{17}a^{8}-\frac{9}{34}a^{6}+\frac{11}{34}a^{4}+\frac{13}{34}a^{3}-\frac{13}{34}a^{2}-\frac{15}{34}a$, $\frac{1}{34}a^{13}+\frac{1}{34}a^{7}+\frac{7}{34}a^{5}+\frac{13}{34}a^{4}+\frac{9}{34}a^{3}-\frac{15}{34}a^{2}+\frac{5}{17}a-\frac{6}{17}$, $\frac{1}{196418}a^{14}-\frac{38}{98209}a^{13}+\frac{7}{98209}a^{12}-\frac{494}{98209}a^{11}+\frac{77}{196418}a^{10}+\frac{837}{196418}a^{9}+\frac{105}{98209}a^{8}+\frac{2361}{11554}a^{7}+\frac{147}{98209}a^{6}+\frac{33523}{98209}a^{5}+\frac{5973}{196418}a^{4}-\frac{12693}{196418}a^{3}+\frac{23157}{196418}a^{2}+\frac{34168}{98209}a+\frac{86657}{196418}$, $\frac{1}{196418}a^{15}+\frac{15}{196418}a^{13}+\frac{38}{98209}a^{12}+\frac{45}{98209}a^{11}+\frac{456}{98209}a^{10}+\frac{275}{196418}a^{9}+\frac{2052}{98209}a^{8}+\frac{225}{98209}a^{7}-\frac{3917}{11554}a^{6}+\frac{189}{98209}a^{5}-\frac{24895}{98209}a^{4}-\frac{5637}{196418}a^{3}-\frac{83919}{196418}a^{2}-\frac{8658}{98209}a+\frac{23184}{98209}$, $\frac{1}{196418}a^{16}+\frac{608}{98209}a^{13}-\frac{60}{98209}a^{12}-\frac{1599}{196418}a^{11}-\frac{440}{98209}a^{10}-\frac{1337}{98209}a^{9}-\frac{1350}{98209}a^{8}-\frac{73613}{196418}a^{7}-\frac{2016}{98209}a^{6}+\frac{21075}{98209}a^{5}-\frac{47616}{98209}a^{4}+\frac{89145}{196418}a^{3}-\frac{360}{98209}a^{2}+\frac{42148}{98209}a+\frac{17301}{196418}$, $\frac{1}{196418}a^{17}-\frac{4}{5777}a^{13}-\frac{38}{5777}a^{12}-\frac{32}{5777}a^{11}+\frac{1903}{196418}a^{10}+\frac{2037}{196418}a^{9}+\frac{5935}{98209}a^{8}+\frac{45465}{196418}a^{7}+\frac{9856}{98209}a^{6}-\frac{46151}{196418}a^{5}+\frac{32279}{98209}a^{4}+\frac{72925}{196418}a^{3}-\frac{4975}{98209}a^{2}-\frac{11673}{98209}a-\frac{77533}{196418}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{74}$, which has order $74$ (assuming GRH)
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{4}{98209}a^{15}+\frac{60}{98209}a^{13}+\frac{304}{98209}a^{12}+\frac{360}{98209}a^{11}+\frac{3648}{98209}a^{10}+\frac{1100}{98209}a^{9}+\frac{16416}{98209}a^{8}+\frac{1800}{98209}a^{7}+\frac{1663}{5777}a^{6}+\frac{1512}{98209}a^{5}-\frac{2742}{98209}a^{4}-\frac{22548}{98209}a^{3}-\frac{41049}{98209}a^{2}-\frac{69264}{98209}a-\frac{10946}{98209}$, $\frac{72}{98209}a^{15}+\frac{1080}{98209}a^{13}-\frac{305}{98209}a^{12}+\frac{6480}{98209}a^{11}-\frac{3660}{98209}a^{10}+\frac{19800}{98209}a^{9}-\frac{16470}{98209}a^{8}+\frac{32400}{98209}a^{7}-\frac{34160}{98209}a^{6}+\frac{27216}{98209}a^{5}-\frac{32025}{98209}a^{4}+\frac{10080}{98209}a^{3}-\frac{10980}{98209}a^{2}+\frac{1080}{98209}a-\frac{610}{98209}$, $\frac{114}{98209}a^{14}+\frac{3}{196418}a^{13}+\frac{1596}{98209}a^{12}+\frac{39}{196418}a^{11}+\frac{8778}{98209}a^{10}+\frac{195}{196418}a^{9}+\frac{23940}{98209}a^{8}+\frac{234}{98209}a^{7}+\frac{33516}{98209}a^{6}-\frac{16785}{196418}a^{5}+\frac{15803}{196418}a^{4}-\frac{43191}{98209}a^{3}-\frac{52184}{98209}a^{2}-\frac{43308}{98209}a-\frac{28657}{98209}$, $\frac{233}{196418}a^{14}-\frac{377}{196418}a^{13}+\frac{1631}{98209}a^{12}-\frac{4901}{196418}a^{11}+\frac{17941}{196418}a^{10}-\frac{24505}{196418}a^{9}+\frac{24465}{98209}a^{8}-\frac{29406}{98209}a^{7}+\frac{34251}{98209}a^{6}-\frac{34307}{98209}a^{5}+\frac{22834}{98209}a^{4}-\frac{34307}{196418}a^{3}+\frac{11417}{196418}a^{2}-\frac{4901}{196418}a+\frac{233}{98209}$, $\frac{21}{196418}a^{17}-\frac{38}{98209}a^{16}+\frac{349}{196418}a^{15}-\frac{494}{98209}a^{14}+\frac{1191}{98209}a^{13}-\frac{2660}{98209}a^{12}+\frac{4300}{98209}a^{11}-\frac{7448}{98209}a^{10}+\frac{17619}{196418}a^{9}-\frac{24929}{196418}a^{8}+\frac{1539}{11554}a^{7}-\frac{15469}{98209}a^{6}+\frac{2091}{11554}a^{5}-\frac{39989}{196418}a^{4}+\frac{43821}{196418}a^{3}-\frac{4565}{196418}a^{2}-\frac{270}{1853}a-\frac{45076}{98209}$, $\frac{21}{196418}a^{17}+\frac{21}{11554}a^{15}+\frac{147}{11554}a^{13}+\frac{273}{5777}a^{11}+\frac{798}{98209}a^{10}+\frac{1155}{11554}a^{9}+\frac{599}{11554}a^{8}+\frac{693}{5777}a^{7}+\frac{4822}{98209}a^{6}+\frac{441}{5777}a^{5}-\frac{17870}{98209}a^{4}+\frac{126}{5777}a^{3}-\frac{26266}{98209}a^{2}-\frac{60480}{98209}a-\frac{4181}{98209}$, $\frac{89}{196418}a^{16}+\frac{712}{98209}a^{14}+\frac{4628}{98209}a^{12}-\frac{987}{196418}a^{11}+\frac{15664}{98209}a^{10}-\frac{10857}{196418}a^{9}+\frac{29370}{98209}a^{8}-\frac{21714}{98209}a^{7}+\frac{29904}{98209}a^{6}-\frac{75999}{196418}a^{5}+\frac{14952}{98209}a^{4}-\frac{54285}{196418}a^{3}+\frac{2848}{98209}a^{2}-\frac{10857}{196418}a+\frac{89}{98209}$, $\frac{38}{98209}a^{16}+\frac{608}{98209}a^{14}+\frac{3952}{98209}a^{12}+\frac{1}{196418}a^{11}+\frac{13376}{98209}a^{10}+\frac{11}{196418}a^{9}+\frac{25080}{98209}a^{8}-\frac{5733}{196418}a^{7}+\frac{25536}{98209}a^{6}-\frac{20181}{98209}a^{5}+\frac{12768}{98209}a^{4}-\frac{80823}{196418}a^{3}-\frac{70237}{196418}a^{2}-\frac{20214}{98209}a-\frac{75025}{98209}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 40934.0329443 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 40934.0329443 \cdot 74}{2\cdot\sqrt{5770142004982097067662109375}}\cr\approx \mathstrut & 0.304306916445 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 18 |
The 18 conjugacy class representatives for $C_{18}$ |
Character table for $C_{18}$ |
Intermediate fields
\(\Q(\sqrt{-15}) \), \(\Q(\zeta_{9})^+\), 6.0.2460375.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.9.0.1}{9} }^{2}$ | R | R | $18$ | $18$ | $18$ | ${\href{/padicField/17.3.0.1}{3} }^{6}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/padicField/31.9.0.1}{9} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/padicField/47.9.0.1}{9} }^{2}$ | ${\href{/padicField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| Deg $18$ | $18$ | $1$ | $45$ | |||
\(5\)
| 5.18.9.2 | $x^{18} + 31250 x^{6} + 390625 x^{2} - 5859375$ | $2$ | $9$ | $9$ | $C_{18}$ | $[\ ]_{2}^{9}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.15.2t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\sqrt{-15}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.27.9t1.a.a | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.a | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.b | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.b | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.45.6t1.b.a | $1$ | $ 3^{2} \cdot 5 $ | 6.0.2460375.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.27.9t1.a.c | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.c | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.d | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.d | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ |
* | 1.45.6t1.b.b | $1$ | $ 3^{2} \cdot 5 $ | 6.0.2460375.1 | $C_6$ (as 6T1) | $0$ | $-1$ |
* | 1.27.9t1.a.e | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.e | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |
* | 1.27.9t1.a.f | $1$ | $ 3^{3}$ | \(\Q(\zeta_{27})^+\) | $C_9$ (as 9T1) | $0$ | $1$ |
* | 1.135.18t1.b.f | $1$ | $ 3^{3} \cdot 5 $ | 18.0.5770142004982097067662109375.1 | $C_{18}$ (as 18T1) | $0$ | $-1$ |