Normalized defining polynomial
\( x^{18} + 18 x^{16} + 135 x^{14} + 546 x^{12} + 1287 x^{10} - 76 x^{9} + 1782 x^{8} - 684 x^{7} + 1386 x^{6} - 2052 x^{5} + 540 x^{4} - 2280 x^{3} + 81 x^{2} - 684 x + 5779 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-5770142004982097067662109375=-\,3^{45}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(135=3^{3}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{135}(1,·)$, $\chi_{135}(134,·)$, $\chi_{135}(74,·)$, $\chi_{135}(76,·)$, $\chi_{135}(14,·)$, $\chi_{135}(16,·)$, $\chi_{135}(89,·)$, $\chi_{135}(91,·)$, $\chi_{135}(29,·)$, $\chi_{135}(31,·)$, $\chi_{135}(104,·)$, $\chi_{135}(106,·)$, $\chi_{135}(44,·)$, $\chi_{135}(46,·)$, $\chi_{135}(119,·)$, $\chi_{135}(121,·)$, $\chi_{135}(59,·)$, $\chi_{135}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{34} a^{9} + \frac{9}{34} a^{7} - \frac{7}{34} a^{5} - \frac{2}{17} a^{3} + \frac{9}{34} a + \frac{13}{34}$, $\frac{1}{34} a^{10} + \frac{9}{34} a^{8} - \frac{7}{34} a^{6} - \frac{2}{17} a^{4} + \frac{9}{34} a^{2} + \frac{13}{34} a$, $\frac{1}{34} a^{11} + \frac{7}{17} a^{7} - \frac{9}{34} a^{5} + \frac{11}{34} a^{3} + \frac{13}{34} a^{2} - \frac{13}{34} a - \frac{15}{34}$, $\frac{1}{34} a^{12} + \frac{7}{17} a^{8} - \frac{9}{34} a^{6} + \frac{11}{34} a^{4} + \frac{13}{34} a^{3} - \frac{13}{34} a^{2} - \frac{15}{34} a$, $\frac{1}{34} a^{13} + \frac{1}{34} a^{7} + \frac{7}{34} a^{5} + \frac{13}{34} a^{4} + \frac{9}{34} a^{3} - \frac{15}{34} a^{2} + \frac{5}{17} a - \frac{6}{17}$, $\frac{1}{196418} a^{14} - \frac{38}{98209} a^{13} + \frac{7}{98209} a^{12} - \frac{494}{98209} a^{11} + \frac{77}{196418} a^{10} + \frac{837}{196418} a^{9} + \frac{105}{98209} a^{8} + \frac{2361}{11554} a^{7} + \frac{147}{98209} a^{6} + \frac{33523}{98209} a^{5} + \frac{5973}{196418} a^{4} - \frac{12693}{196418} a^{3} + \frac{23157}{196418} a^{2} + \frac{34168}{98209} a + \frac{86657}{196418}$, $\frac{1}{196418} a^{15} + \frac{15}{196418} a^{13} + \frac{38}{98209} a^{12} + \frac{45}{98209} a^{11} + \frac{456}{98209} a^{10} + \frac{275}{196418} a^{9} + \frac{2052}{98209} a^{8} + \frac{225}{98209} a^{7} - \frac{3917}{11554} a^{6} + \frac{189}{98209} a^{5} - \frac{24895}{98209} a^{4} - \frac{5637}{196418} a^{3} - \frac{83919}{196418} a^{2} - \frac{8658}{98209} a + \frac{23184}{98209}$, $\frac{1}{196418} a^{16} + \frac{608}{98209} a^{13} - \frac{60}{98209} a^{12} - \frac{1599}{196418} a^{11} - \frac{440}{98209} a^{10} - \frac{1337}{98209} a^{9} - \frac{1350}{98209} a^{8} - \frac{73613}{196418} a^{7} - \frac{2016}{98209} a^{6} + \frac{21075}{98209} a^{5} - \frac{47616}{98209} a^{4} + \frac{89145}{196418} a^{3} - \frac{360}{98209} a^{2} + \frac{42148}{98209} a + \frac{17301}{196418}$, $\frac{1}{196418} a^{17} - \frac{4}{5777} a^{13} - \frac{38}{5777} a^{12} - \frac{32}{5777} a^{11} + \frac{1903}{196418} a^{10} + \frac{2037}{196418} a^{9} + \frac{5935}{98209} a^{8} + \frac{45465}{196418} a^{7} + \frac{9856}{98209} a^{6} - \frac{46151}{196418} a^{5} + \frac{32279}{98209} a^{4} + \frac{72925}{196418} a^{3} - \frac{4975}{98209} a^{2} - \frac{11673}{98209} a - \frac{77533}{196418}$
Class group and class number
$C_{74}$, which has order $74$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{9})^+\), 6.0.2460375.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||